精英家教网 > 高中数学 > 题目详情
1.已知集合A={x|x2≤4x},B={x|x<1},则A∩B等于(  )
A.(-∞,1)B.[0,1)C.[0,4]D.[-4,+∞)

分析 先分别求出集合A和B,由此能求出A∩B.

解答 解:∵集合A={x|x2≤4x}={x|0≤x≤4},B={x|x<1},
∴A∩B={x|0≤x<1}=[0,1).
故选:B.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线L交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|,当点A的横坐标为3时,△ADF为正三角形.
(1)求C的方程
(2)若直线L1平行L,且L1和C有且只有一个公共点E,证明直线AE恒过定点?求△ABE的面积最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列命题的说法错误的是(  )
A.对于命题p:?x∈R,x2+x+1>0,则¬p:?x∈R,x2+x+1≤0
B.“x=1”是“x2-3x+2=0”的充分不必要条件
C.“sinθ=$\frac{1}{2}$”是“θ=30°”的充分不必要条件
D.命题“若x2-3x+2=0,则x=1”的逆否命题是“若x≠1,则x2-3x+2≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.数列{an}满足:${a_1}=\frac{1}{3}$,且$\frac{n}{a_n}=\frac{{2{a_{n-1}}+n-1}}{{{a_{n-1}}}}(n∈{N^*},n≥2)$,则数列{an}的通项公式是an=$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若双曲线C:$\frac{{x}^{2}}{4}$-y2=1的左、右焦点分别为F1,F2,P为双曲线C上一点,满足$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$=0的点P依次记为P1、P2、P3、P4,则四边形P1P2P3P4的面积为(  )
A.$\frac{8\sqrt{5}}{5}$B.2$\sqrt{5}$C.$\frac{8\sqrt{6}}{5}$D.2$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设α,β是两个平面,l,m是两条直线,下列各条件,可以判断α∥β的有(  )
①l?α,m?α,且l∥β,m∥β,②l?α,m?β,且l∥β,m∥α,③l∥α,m∥β,且l∥m,④l∥α,l∥β,m∥α,m∥β,且l,m互为异面直线.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,P是平行四边形ABCD所在平面外一点,E是PD的中点.
(1)求证:PB∥平面EAC;
(2)若M是CD上异于C、D的点.连结PM交CE于G,连结BM交AC于H,求证:GH∥PB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某校高三年级的一次测验成绩的频率分布直方图如图所示,现要按如图所示的4个分数段进行分层抽样,抽取100人了解情况,已知70~80分数段抽取了30人,则全体高三年级学生的平均分数为82(以各组区间的中点值代表改组的取值)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.计算${∫}_{1}^{e}$(x-$\frac{1}{x}$)dx=(  )
A.$\frac{1}{2}$e2B.$\frac{{e}^{2}+1}{2}$C.$\frac{{e}^{2}-1}{2}$D.$\frac{{e}^{2}-3}{2}$

查看答案和解析>>

同步练习册答案