精英家教网 > 高中数学 > 题目详情
6.设α,β是两个平面,l,m是两条直线,下列各条件,可以判断α∥β的有(  )
①l?α,m?α,且l∥β,m∥β,②l?α,m?β,且l∥β,m∥α,③l∥α,m∥β,且l∥m,④l∥α,l∥β,m∥α,m∥β,且l,m互为异面直线.
A.1个B.2个C.3个D.4个

分析 利用直线与平面平行的性质,判断①②③,
直线l作一平面γ,设γ∩α=a,γ∩β=b,过直线m作一平面π,设π∩α=c,π∩β=d,利用线面平行的性质定理和面面平行的判定定理即可判断出④.

解答 解:对于①,增加上l与m相交才能判断出α∥β,①错.
对于②③,α,β两个平面都有可能α与β相交,排除②和③.
对于④,过直线l作一平面γ,设γ∩α=a,γ∩β=b,∵l∥α,l∥β,则l∥a,l∥b,∴a∥β;
过直线m作一平面π,设π∩α=c,π∩β=d,∵m∥α,m∥β,则m∥c,m∥d,∴c∥β.
∵l与m是异面直线,∴a与c必定相交,∴α∥β.因此④正确.
故选:A.

点评 本题考查平面与平面平行的判定,考查直线与平面平行的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若满足条件C=60°,AB=$\sqrt{3}$的△ABC有两个,那么BC的取值范围是(  )
A.$(1,\sqrt{2})$B.(1,2)C.$(\sqrt{2},\sqrt{3})$D.$(\sqrt{3},2)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,若输入n=10,则输出的s值为(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.f(x)=x2+2x+m,g(x)=m2x+1,若对任意的x1∈[-2,1],都有x2∈[0,2],使得f(x1)=g(x2)成立,求m范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|x2≤4x},B={x|x<1},则A∩B等于(  )
A.(-∞,1)B.[0,1)C.[0,4]D.[-4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知三棱柱ABC-A1B1C1的直观图和三视图如图所示,E是棱CC1上一点.
(1)若CE=2EC1,求三棱锥E-ACB1的体积.
(2)若E是CC1的中点,求C到平面AEB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知等差数列{an}的前n项和为Sn,若a3=9-a6,则S8=36.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线ω:y2=ax(a>0)上一点,P(t,2)到焦点F的距离为2t
(Ⅰ)求抛物线ω的方程
(Ⅱ)如图已知点D的坐标为(4,0),过抛物线ω的焦点F的直线交抛物线ω于M,N两点,若过D和N两点的直线交抛物线ω的准线于Q点,求证:直线MQ与x轴交于一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.11、设函数f(x)是奇函数,f(-2)=0,当x>0时,xf'(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是(  )
A.(-∞,-2)∪(0,2)B.(-2,0)∪(2,+∞)C.(-∞,-2)∪(-2,0)D.(0,2)∪(2,+∞)

查看答案和解析>>

同步练习册答案