精英家教网 > 高中数学 > 题目详情
18.已知等差数列{an}的前n项和为Sn,若a3=9-a6,则S8=36.

分析 可得a1+a8=9,代入求和公式计算可得.

解答 解:由题意可得a3+a6=9,
由等差数列的性质可得a1+a8=9
故S8=$\frac{8}{2}$(a1+a8)=4×9=36
故答案为:36.

点评 本题考查等差数列的求和公式和性质,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如果$\frac{x^2}{1-2k}-\frac{y^2}{k-2}=1$表示焦点在y轴上的双曲线,那么实数k的取值范围是(  )
A.$({\frac{1}{2},2})$B.$({\frac{1}{2},1})∪({1,2})$C.(1,2)D.$({\frac{1}{2},∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.数列{an}满足:${a_1}=\frac{1}{3}$,且$\frac{n}{a_n}=\frac{{2{a_{n-1}}+n-1}}{{{a_{n-1}}}}(n∈{N^*},n≥2)$,则数列{an}的通项公式是an=$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设α,β是两个平面,l,m是两条直线,下列各条件,可以判断α∥β的有(  )
①l?α,m?α,且l∥β,m∥β,②l?α,m?β,且l∥β,m∥α,③l∥α,m∥β,且l∥m,④l∥α,l∥β,m∥α,m∥β,且l,m互为异面直线.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,P是平行四边形ABCD所在平面外一点,E是PD的中点.
(1)求证:PB∥平面EAC;
(2)若M是CD上异于C、D的点.连结PM交CE于G,连结BM交AC于H,求证:GH∥PB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥$\frac{5}{13}$|CD|,则该双曲线的离心率的取值范围为(  )
A.[$\frac{14}{13}$,+∞)B.[$\frac{13}{12}$,+∞)C.[$\frac{15}{13}$,2)D.[$\frac{5}{4}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某校高三年级的一次测验成绩的频率分布直方图如图所示,现要按如图所示的4个分数段进行分层抽样,抽取100人了解情况,已知70~80分数段抽取了30人,则全体高三年级学生的平均分数为82(以各组区间的中点值代表改组的取值)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,如果x1,x2∈($\frac{π}{6}$,$\frac{2π}{3}$)且x1,x2是方程f(x)=m的两个实数根,其中m∈($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则f(x1+x2)=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知$sinα=\frac{1-m}{1+m},cosα=\frac{3m-1}{1+m}$,则m=1或$\frac{1}{9}$.

查看答案和解析>>

同步练习册答案