精英家教网 > 高中数学 > 题目详情
9.已知$sinα=\frac{1-m}{1+m},cosα=\frac{3m-1}{1+m}$,则m=1或$\frac{1}{9}$.

分析 根据sin2α+cos2α=1代值计算即可.

解答 解:$sinα=\frac{1-m}{1+m},cosα=\frac{3m-1}{1+m}$,
sin2α+cos2α=1,
∴($\frac{1-m}{1+m}$)2+($\frac{3m-1}{1+m}$)2=1,
化简整理可得9m2-10m+1=0,
解得m=1或$\frac{1}{9}$,
故答案为:1或$\frac{1}{9}$,

点评 本题考查了同角的三角函数的关系,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知等差数列{an}的前n项和为Sn,若a3=9-a6,则S8=36.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知△ABC中,角A,B,C的对边分别为a,b,c,若c=$\frac{5}{2},b=\sqrt{6},4a-3\sqrt{6}$cosA=0.
(1)求a的值;
(2)若B=λA,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.11、设函数f(x)是奇函数,f(-2)=0,当x>0时,xf'(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是(  )
A.(-∞,-2)∪(0,2)B.(-2,0)∪(2,+∞)C.(-∞,-2)∪(-2,0)D.(0,2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.x∈[0,2π],$y=\sqrt{tanx}+\sqrt{-cosx}$定义域为(  )
A.$x∈[0,\frac{π}{2})$B.$(\frac{π}{2},π]$C.$[π,\frac{3π}{2})$D.$(\frac{3π}{2},2π]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一种灯泡使用一年的概率为0.8,使用两年的概率为0.4,现有已经使用一年的灯泡,它还能使用一年的概率是(  )
A.0.4B.0.5C.0.6D.0.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,有一直径为40cm的圆形铁皮,要从中剪出一个最大的圆心角为900的扇形铁皮ABC,把剪出的扇形围成一个圆锥,那么该圆锥的高为(  )
A.$5\sqrt{2}cm$B.20cmC.$10\sqrt{7}cm$D.$5\sqrt{30}cm$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.从狼堡去青青草原的道路有6条,从青青草原去羊村的道路有20条,狼堡与羊村被青青草原隔开,则狼去羊村的不同走法有(  )
A.120B.26C.20D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=a2-cos x,则f′(x)等于sinx.

查看答案和解析>>

同步练习册答案