精英家教网 > 高中数学 > 题目详情
17.11、设函数f(x)是奇函数,f(-2)=0,当x>0时,xf'(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是(  )
A.(-∞,-2)∪(0,2)B.(-2,0)∪(2,+∞)C.(-∞,-2)∪(-2,0)D.(0,2)∪(2,+∞)

分析 构造函数g(x),利用g(x)的导数判断函数g(x)的单调性与奇偶性,求出不等式的解集即可.

解答 解:设g(x)=$\frac{f(x)}{x}$,则g(x)的导数为:g′(x)=$\frac{xf'(x)-f(x)}{{x}^{2}}$,
∵当x>0时总有xf′(x)-f(x)>0成立,
即当x>0时,g′(x)>0,
∴当x>0时,函数g(x)为增函数,
又∵g(-x)=$\frac{f(-x)}{-x}$=$\frac{f(x)}{x}$=g(x),
∴函数g(x)为定义域上的偶函数,
∴x<0时,函数g(x)是减函数,
又∵g(-2)=$\frac{f(-2)}{-2}$=0=g(2),
∴x>0时,由f(x)>0,得:g(x)>g(2),解得:x>2,
x<0时,由f(x)>0,得:g(x)<g(-2),解得:x>-2,
∴f(x)>0成立的x的取值范围是:(-2,0)∪(2,+∞).
故选:A.

点评 本题考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式的应用问题,是综合题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设α,β是两个平面,l,m是两条直线,下列各条件,可以判断α∥β的有(  )
①l?α,m?α,且l∥β,m∥β,②l?α,m?β,且l∥β,m∥α,③l∥α,m∥β,且l∥m,④l∥α,l∥β,m∥α,m∥β,且l,m互为异面直线.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,如果x1,x2∈($\frac{π}{6}$,$\frac{2π}{3}$)且x1,x2是方程f(x)=m的两个实数根,其中m∈($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则f(x1+x2)=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=Asin(ωx+ϕ)+B(A>0,ω>0,|ϕ|<\frac{π}{2})$的一系列对应值如表:
x-$\frac{π}{6}$$\frac{π}{3}$$\frac{5π}{6}$$\frac{4π}{3}$$\frac{11π}{6}$$\frac{7π}{3}$$\frac{17π}{6}$
f(x)-1131-113
(1)根据表格提供的数据求函数的解析式;
(2 )根据(1)的结果若函数y=f(kx)(k>0)的最小正周期为$\frac{2π}{3}$,当$x∈[0,\frac{π}{3}]$时,方程f(kx)=m恰好有两个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.计算${∫}_{1}^{e}$(x-$\frac{1}{x}$)dx=(  )
A.$\frac{1}{2}$e2B.$\frac{{e}^{2}+1}{2}$C.$\frac{{e}^{2}-1}{2}$D.$\frac{{e}^{2}-3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知{an}是等差数列,其前n项和为Sn,若a6=S3=12,则数列{an}的通项 an=2n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知$sinα=\frac{1-m}{1+m},cosα=\frac{3m-1}{1+m}$,则m=1或$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知ξ~B(n,0.3),Dξ=2.1,则n的值为(  )
A.10B.7C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)已知α为第二象限角,且 sinα=$\frac{\sqrt{15}}{4}$,求$\frac{sin(α+\frac{π}{4})}{sin2α+cos2α+1}$的值.
(2)已知α∈(0,$\frac{π}{4}$),β∈(0,π),且tan(α-β)=$\frac{1}{2}$,tanβ=-$\frac{1}{7}$,求tan(2α-β)的值及角2α-β.

查看答案和解析>>

同步练习册答案