精英家教网 > 高中数学 > 题目详情
3.过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥$\frac{5}{13}$|CD|,则该双曲线的离心率的取值范围为(  )
A.[$\frac{14}{13}$,+∞)B.[$\frac{13}{12}$,+∞)C.[$\frac{15}{13}$,2)D.[$\frac{5}{4}$,2)

分析 设出双曲线的右焦点和渐近线方程,令x=c,联立方程求出A,B,C,D的坐标,结合距离关系和条件,运用离心率公式和a,b,c的关系,进行求解即可.

解答 解:设双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为(c,0),
当x=c时代入双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)得y=±$\frac{{b}^{2}}{a}$,
则A(c,$\frac{{b}^{2}}{a}$),B(c,-$\frac{{b}^{2}}{a}$),
则|AB|=$\frac{2{b}^{2}}{a}$,
将x=c代入y=±$\frac{b}{a}$x得y=±$\frac{bc}{a}$,则C(c,$\frac{bc}{a}$),D(c,-$\frac{bc}{a}$),
则|CD|=$\frac{2bc}{a}$,
∵|AB|≥$\frac{5}{13}$|CD|,
∴$\frac{2{b}^{2}}{a}$≥$\frac{5}{13}$•$\frac{2bc}{a}$,即b≥$\frac{5}{13}$c,
则b2=c2-a2≥$\frac{25}{169}$c2
则e≥$\frac{13}{12}$.
故选B.

点评 本题主要考查双曲线离心率的计算,根据方程求出交点坐标,结合距离公式进行求解是解决本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax+lnx,a∈R,
(Ⅰ)求函数f(x)的极值;
(Ⅱ)对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x0,y0),
且x1<x0<x2,使得曲线在点Q处的切线?∥P1P,则称?为弦P1P2的伴随切线.特别地,当x0=λx1+(1-λ)x2(0<λ<1)时,又称?为P1P2的λ-伴随切线.
求证:曲线y=f(x)的任意一条弦均有伴随切线,并且伴随切线是唯一的.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.f(x)=x2+2x+m,g(x)=m2x+1,若对任意的x1∈[-2,1],都有x2∈[0,2],使得f(x1)=g(x2)成立,求m范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知三棱柱ABC-A1B1C1的直观图和三视图如图所示,E是棱CC1上一点.
(1)若CE=2EC1,求三棱锥E-ACB1的体积.
(2)若E是CC1的中点,求C到平面AEB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知等差数列{an}的前n项和为Sn,若a3=9-a6,则S8=36.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ex-1+ax,a∈R.
(1)讨论函数f(x)的单调区间;
(2)若?x∈[1,+∞),f(x)+lnx≥a+1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线ω:y2=ax(a>0)上一点,P(t,2)到焦点F的距离为2t
(Ⅰ)求抛物线ω的方程
(Ⅱ)如图已知点D的坐标为(4,0),过抛物线ω的焦点F的直线交抛物线ω于M,N两点,若过D和N两点的直线交抛物线ω的准线于Q点,求证:直线MQ与x轴交于一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如果f(3x)=2x,则f(6)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一种灯泡使用一年的概率为0.8,使用两年的概率为0.4,现有已经使用一年的灯泡,它还能使用一年的概率是(  )
A.0.4B.0.5C.0.6D.0.8

查看答案和解析>>

同步练习册答案