精英家教网 > 高中数学 > 题目详情
精英家教网如图,在三棱锥P-ABC中,△ABC是正三角形∠PCA=90°,D是PA中点,二面角P-AC-B为120°,PC=2,AB=2
3

(1)求证:AC⊥BD;
(2)求BD与平面ABC所成角.
分析:(1)欲证AC⊥BD,可证AC垂直于BD所在的平面,故取AC的中点E,并连接DE、BE,则问题得证.
(2)需确定∠DBE为BD与平面ABC所成角、∠BED为二面角P-AC-B的平面角,则在△BDE中两次利用余弦定理问题解决.
解答:精英家教网(1)证明:取AC的中点E,并连接DE、BE,如图所示,
因为D是PA中点,E是AC的中点,所以DE∥PC,
又∠PCA=90°,即PC⊥AC,所以DE⊥AC,
且正三角形ABC中,BE⊥AC,
所以AC⊥平面BDE,又BD?平面BDE,
所以AC⊥BD.
(2)解:在平面BDE中作EF⊥BE,交BD于F,且EF⊥AC,BE∩AC=E,
所以EF⊥平面ABC,则∠FBE即∠DBE为BD与平面ABC所成角,
其中DE=
1
2
=1,BE=2
3
sin60°
=3,
由AC⊥平面BDE知,∠BED为二面角P-AC-B的平面角,即∠BED=120°,
由余弦定理得,BD2=1+9-2×1×3cos120°=13,即BD=
13

所以cos∠DBE=
9+13-1
2×3×
13
=
7
13
26

所以∠DBE=arccos
7
13
26

即BD与平面ABC所成角为arccos
7
13
26
点评:本题考查线线垂直的判定、二面角的平面角及线面夹角的定义,同时考查余弦定理与空间想象能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3.PB=2,PC=1.设M是底面ABC内一点,定义f(M)=(m,n,p),其中m、n、p分别是三棱锥M-PAB、三棱锥M-PBC、三棱锥M-PCA的体积.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,则正实数a的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,则当△AEF的面积最大时,tanθ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(Ⅰ)求证:DE‖平面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一绳子从A点绕三棱锥侧面一圈回到点A的最短距离是
3
,则PA=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,点D,E分别在棱
PB,PC上,且BC∥平面ADE
(I)求证:DE⊥平面PAC;
(Ⅱ)当二面角A-DE-P为直二面角时,求多面体ABCED与PAED的体积比.

查看答案和解析>>

同步练习册答案