精英家教网 > 高中数学 > 题目详情
11.设SA、SB是圆锥SO的两条母线,O是底面圆心,底面积为100π,C是SB中点,AC与底面所成角为45°,∠AOB=60°,求圆锥的高.

分析 作出直观图,作出AC与底面所成的角,根据圆锥的结构特征和勾股定理解出圆锥的高.

解答 解∵圆锥底面积为100π,∴圆锥的底面半径r=10.
过C作CD⊥平面ABO,垂足为D,则D为OB中点.∴SO=2CD.
∵∠AOB=60°,OA=OB=10,∴△OAB是等边三角形,
∴OD=$\frac{1}{2}OB=5$,AD=5$\sqrt{3}$.
∵AC与底面所成角为45°,即∠CAD=45°,
∴CD=AD=5$\sqrt{3}$,
∴圆锥的高SO=2CD=10$\sqrt{3}$.

点评 本题考查了圆锥的结构特征,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若a=ln2,b=5${\;}^{-\frac{1}{2}}$,c=${∫}_{0}^{1}$xdx,则a,b,c的大小关系(  )
A.a<b<cBB.b<a<cCC.b<c<aD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.记定义在区间[a,b]上的连续函数y=f(x),如果存在x0∈[a,b],使得f(x0)=$\frac{{∫}_{a}^{b}f(x)dx}{b-a}$成立,则称x0为函数f(x)在[a,b]上的“平均值点”,那么函数f(x)=x3+2x在[-1,1]上“平均值点”的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x+5},x≤0}\\{f(x-5),x>0}\end{array}\right.$,则f(2016)=(  )
A.$\frac{1}{2}$B.2C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在空间中,设m,n为两条不同直线,α,β为两个不同平面,则下列命题正确的是(  )
A.若m∥α且α∥β,则m∥β
B.若α⊥β,m?α,n?β,则m⊥n
C.若m⊥α且α∥β,则m⊥β
D.若m不垂直于α,且n?α,则m必不垂直于n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知正四面体ABCD的棱长为l,E是AB的中点,过E作其外接球的截面,则此截面面积的最小值为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.噪声污染已经成为影响人们身体健康和生活质m的严重问题,为了了解强度D(单位:分贝)与声音能量I(单位:W/cm2)之间的关系,将测量得到的声音强度Di和声音能量Ii(i=1.2.…,10)数据作了初步处理,得到下面的散点图及一些统计量的值.
$\overline{I}$$\overline{D}$$\overline{W}$$\sum_{i=1}^{10}$(Ii-$\overline{I}$)2$\sum_{i=1}^{10}$(Wi-$\overline{W}$)2$\sum_{i=1}^{10}$(Ii-$\overline{I}$)(Di-$\overline{D}$)$\sum_{i=1}^{10}$(Wi-$\overline{W}$)(Di-$\overline{D}$)
1.04×10-1145.7-11.51.56×10-210.516.88×10-115.1
表中Wi=lgIi,$\overline{W}$=$\frac{1}{10}$$\sum_{i=1}^{10}$Wi
(Ⅰ)根据表中数据,求声音强度D关于声音能量I的回归方程D=a+blgI;
(Ⅱ)当声音强度大于60分贝时属于噪音,会产生噪声污染,城市中某点P共受到两个声源的影响,这两个声源的声音能量分别是I1和I2,且$\frac{1}{I_1}+\frac{1}{I_2}={10^{10}}$.已知点P的声音能量等于声音能量Il与I2之和.请根据(I)中的回归方程,判断P点是否受到噪声污染的干扰,并说明理由.
附:对于一组数据(μl,ν1),(μ2,ν2),…(μn,νn),其回归直线ν=α+βμ的斜率和截距的最小二乘估计分别为:β=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({u}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\overline{α}$=$\overline{v}$-β$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{an}满足a1=0,an+1=an+(2n-1),求an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.为研究变量x和y的线性相关关系,甲、乙二人分别做了研究,利用线性回归方法得到回归直线l1和l2,由两人计算知,x相同,y也相同,则l1与l2的关系为(  )
A.垂直B.平行C.相交于点($\overline{x}$,$\overline{y}$)D.重合

查看答案和解析>>

同步练习册答案