分析 (1)根据对数的运算性质即可求出,
(2)根据指数幂的运算性质即可求出.
解答 解(1)原式=${log_3}\frac{{{3^{\frac{3}{4}}}}}{3}+lg(25×4)+2$,
=${log_3}{3^{-\frac{1}{4}}}+lg{10^2}+2$,
=$-\frac{1}{4}+2+2=\frac{15}{4}$,
(2)∵a-a-1=3,
∴(a+a-1)2=(a-a-1)2+4=13,
∵a>0∴a+a-1>0,
∴$a+{a^{-1}}=\sqrt{13}$,
∴${a^2}-{a^{-2}}=(a+{a^{-1}})•(a-{a^{-1}})=3\sqrt{13}$
点评 本题考查了对数和指数幂的运算性质,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{1}{3},1)$ | B. | $(-∞,\frac{1}{3})∪(1,+∞)$ | C. | $(-\frac{1}{3},\frac{1}{3})$ | D. | $(-∞,-\frac{1}{3})∪(\frac{1}{3},+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | 2$\sqrt{2}$ | C. | 2$\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | -4 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com