精英家教网 > 高中数学 > 题目详情
12.已知数列{an}的首项a1=2,且对于任意的n∈N*都有3an+1=2an+1,则an=1+$(\frac{2}{3})^{n-1}$.

分析 对于任意的n∈N*都有3an+1=2an+1,变形为an+1-1=$\frac{2}{3}$(an-1),再利用等比数列的通项公式即可得出.

解答 解:∵对于任意的n∈N*都有3an+1=2an+1,
∴an+1-1=$\frac{2}{3}$(an-1),
∴数列{an-1}是等比数列,首项为1,公比为$\frac{2}{3}$.
∴an-1=$(\frac{2}{3})^{n-1}$,
可得:an=1+$(\frac{2}{3})^{n-1}$,
故答案为:1+$(\frac{2}{3})^{n-1}$.

点评 本题考查了数列的递推关系、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,直角梯形ABCD与等腰直角三角形ABE所在面互相垂直,AB∥CD,AB⊥BC,AB=2CD=2BC,EA⊥EB,
(1)在AE上是否存在一点F,使得直线DF∥面BCE,若存在求请给出点F的位置;
(2)点G是三角形ABE的重心,$CD=\sqrt{2}$,试求三棱锥E-ADG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知O为坐标原点,A(1,2),点P的坐标(x,y)满足约束条件$\left\{\begin{array}{l}{x+|y|≤1}\\{x≥0}\end{array}\right.$,则z=$\overrightarrow{OA}$•$\overrightarrow{OP}$的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)计算;log3$\frac{{\root{4}{27}}}{3}+lg25+lg4+{7^{{{log}_7}2}}$;  
(2)已知a>0,且a-a-1=3,求值:a2-a-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=sin(2x+$\frac{π}{6}$)(x∈R),为了得到函数g(x)=cos2x的图象,只需将y=f(x)的图象(  )
A.向左平移$\frac{π}{6}$个单位B.向右平移$\frac{π}{6}$个单位
C.向左平移$\frac{π}{12}$个单位D.向右平移$\frac{π}{12}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列命题中真命题的个数为(  )
①面积相等的三角形是全等三角形;
②若xy=0,则|x|+|y|=0;
③若a>b,则a+c>b+c;
④矩形的对角线互相垂直.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若对?x,y∈(0,+∞)不等式4xlna≤ex+y-2+ex-y-2+2恒成立,则正实数a的最大值为(  )
A.$\sqrt{e}$B.$\frac{1}{2}$eC.eD.2e

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x,y满足(x+2)2+(y-2)2=3,则x2+y2的最大值是11+4$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}的前n项和为Sn,且an=$\frac{1}{n(n+1)}$,则S9等于(  )
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{9}{10}$D.$\frac{4}{21}$

查看答案和解析>>

同步练习册答案