精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ex
x-a
(a<0)
(1)求函数f(x)的定义域及单调区间;
(2)若实数x∈(a,0]时,不等式f(x)≥
1
2
恒成立,求a的取值范围.
分析:(1)函数的分母不为0,可求函数的定义域;求导函数,令其大于0(小于0),结合函数的定义域,可求函数的单调区间;
(2)由题意可知,a<0,且f(x)=
ex
x-a
在(a,0]上的最小值大于等于
1
2
时,实数x∈(a,0]时,使得不等式f(x)≥
1
2
恒成立,故问题转化为求函数f(x)=
ex
x-a
在(a,0]上的最小值.
解答:解:(1)函数f(x)的定义域为{x|x≠a}….1分f′(x)=
ex(x-a)-ex•1
(x-a)2
=
ex[x-(a+1)]
(x-a)2
.….3分
由f'(x)>0,解得x>a+1.由f'(x)<0,解得x<a+1且x≠a.
∴f(x)的单调递增区间为(a+1,+∞),单调递减区间为(-∞,a),(a,a+1).….6分
(2)由题意可知,a<0,且f(x)=
ex
x-a
在(a,0]上的最小值大于等于
1
2
时,实数x∈(a,0]时,
使得不等式f(x)≥
1
2
恒成立.
①若a+1<0即a<-1时,
x (a,a+1) a+1 (a+1,0)
f'(x) - 0 +
f(x) 极小值
∴f(x)在(a,0]上的最小值为f(a+1)=ea+1.则ea+1
1
2
,得a≥ln
1
2
-1
….9分
②若a+1≥0即a≥-1时,f(x)在(a,0]上单调递减,则f(x)在(a,0]上的最小值为f(0)=-
1
a

-
1
a
1
2
得a≥-2.                                              …10分
综上所述,0>a≥ln
1
2
-1
….12分.
点评:本题主要考查利用导数求函数的单调区间,求函数的最值,考查等价转化能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
e-x-2,(x≤0)
2ax-1,(x>0)
(a是常数且a>0).对于下列命题:
①函数f(x)的最小值是-1;
②函数f(x)在R上是单调函数;
③若f(x)>0在[
1
2
,+∞)
上恒成立,则a的取值范围是a>1;
④对任意x1<0,x2<0且x1≠x2,恒有f(
x1+x2
2
)<
f(x1)+f(x2)
2

其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-z+log3
1
x
,若实数x0是方程f(x)=0的解,且x1>x0,则f(x1)的值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)已知函数f(x)=e-kx(x2+x-
1k
)(k<0)

(Ⅰ)求f(x)的单调区间;
(Ⅱ)是否存在实数k,使得函数f(x)的极大值等于3e-2?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河南模拟)已知函数f(x)=e-kx(x2+x-
1k
)(k<0)

(Ⅰ)求f(x)的单调区间;
(Ⅱ)是否存在实数k,使得函数f(x)的极大值等于3e-2?若存在,求出k的值;若不存在,请说明理由.
请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•孝感模拟)已知函数
f(x)=
e-x-1,(x≤0)
|lnx|,(x>0)
,集合M={x|f[f(x)]=1},则M中元素的个数为(  )

查看答案和解析>>

同步练习册答案