精英家教网 > 高中数学 > 题目详情
已知a∈R,函数f(x)=2x3-3(a+1)x2+6ax,x∈R
(1)已知任意三次函数的图象为中心对称图形,若本题中的函数f(x)图象以P(2,m)为对称中心,求实数a和m的值
(2)若|a|>1,求函数f(x)在闭区间[0,2|a|]上的最小值.
分析:(1)解法一:由函数f(x)图象以P(2,m)为对称中心,取x=1,3,则f(1)+f(3)=2f(2),代入计算即可得到a,f(x),及m=f(2);
解法二:由f(x)=2x3-3(a+1)x2+6ax,可得f(x)=6[x2-(a+1)x+a]=6(x-1)(x-a),l利用对称中心可得
1+a
2
=2
,以下同解法一;
(2)利用导数的运算法则得到f(x),由|a|>1,分类讨论a>1与a<-1,得到其单调性与极值,进而得到最值.
解答:解:(1)解法一:由函数f(x)图象以P(2,m)为对称中心,
则f(1)+f(3)=2f(2),代入计算得:3a-1+27-9a=8,∴a=3,
故f(x)=2x3-12x2+18x,
则m=f(2)=16-48+36=4
解法二:由f(x)=2x3-3(a+1)x2+6ax,∴f'(x)=6[x2-(a+1)x+a]=6(x-1)(x-a),
则a+12=2,则a=3,故f(x)=2x3-12x2+18x,
则m=f(2)=16-48+36=4
(2)由f'(x)=6[x2-(a+1)x+a]=6(x-a)(x-1),
因为|a|>1,∴a<-1或a>1,讨论:
1.若a<-1,如下表:
x (0,1) 1 (1,2|a|)
f'(x) - 0 +
f(x) 3a-1
则此时fmin(x)=f(1)=3a-1.
若a>1时,如下表:
x (0,1) 1 (1,a) a (a,2|a|)
f'(x) + 0 - 0 +
f(x) 3a-1 3a2-a3
由f(0)=0,f(a)=3a2-a3=a2(3-a),
i)当1<a≤3时,f(a)≥f(0),则fmin(x)=f(0)=0;
ii)当a>3时,f(a)<f(0),则fmin(x)=f(a)=3a2-a3;

综上所述:fmin(x)=
3a-1,(a<-1)
0,(1<a≤3)
3a2-a3,(a>3)
点评:本题综合考查了利用导数解决3次函数的中心对称性、单调性、极值与最值等基础知识与基本技能,考查了分类讨论的思想方法、推理能力与计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
1
12
x3+
a+1
2
x2+(4a+1)x

(Ⅰ)如果函数g(x)=f′(x)是偶函数,求f(x)的极大值和极小值;
(Ⅱ)如果函数f(x)是(-∞,?+∞)上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=ln(x+1)-x2+ax+2.
(1)若函数f(x)在[1,+∞)上为减函数,求实数a的取值范围;
(2)令a=-1,b∈R,已知函数g(x)=b+2bx-x2.若对任意x1∈(-1,+∞),总存在x2∈[-1,+∞),使得f(x1)=g(x2)成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
a
x
+lnx-1,g(x)=(lnx-1)
e
x
 
+x
(其中e为自然对数的底).
(1)当a>0时,求函数f(x)在区间(0,e]上的最小值;
(2)是否存在实数x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在求出x0的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)已知a∈R,函数 f(x)=x3+ax2+(a-3)x的导函数是偶函数,则曲线y=f(x)在原点处的切线方程为
3x+y=0
3x+y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江)已知a∈R,函数f(x)=x3-3x2+3ax-3a+3.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈[0,2]时,求|f(x)|的最大值.

查看答案和解析>>

同步练习册答案