精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)是定义在R上的偶函数,且在(0,+∞)上是增函数,设a=f(﹣ ),b=f(log3 ),c=f( ),则a、b、c的大小关系是( )
A.a<c<b
B.b<a<c
C.b<c<a
D.c<b<a

【答案】C
【解析】解:a=f(﹣ )=f( ),b=f(log3 )=f(log32),c=f( ),

∵0<log32<1,1< ,∴ >log32.

∵f(x)在(0,+∞)上是增函数,

∴a>c>b,

故选C.

根据f(x)为定义R上的偶函数,可得a=f(﹣ )=f( ),由对数运算性质可得b=f(log3 )=f(-log32)=f(log32),再结合f(x)在(0,+∞)上是增函数,即可判断出a,b,c的大小关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥S﹣ABC中,M、N分别是棱SC、BC的中点,且MN⊥AM,若AB=2 ,则此正三棱锥外接球的体积是( )

A.12π
B.4 π
C. π
D.12 π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE= ,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)证明:AG∥平面BDE.
(2)求平面BDE和平面ADE所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(Ⅰ)证明:PB∥平面AEC;
(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD= ,求三棱锥E﹣ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了考查某厂2000名工人的生产技能情况,随机抽查了该厂n名工人某天的产量(单位:件),整理后得到如下的频率分布直方图(产品数量的分组区间为[10,15),[15,20),[20,25),[25,30),[30,35]),其中产量在[20,25)的工人有6名.
(Ⅰ)求这一天产量不小于25的工人人数;
(Ⅱ)工厂规定从产量低于20件的工人中随机的选取2名工人进行培训,求这2名工人不在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为 (a为常数,n∈N*).
(1)求a1 , a2 , a3
(2)若数列{an}为等比数列,求常数a的值及an

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面给出了四个类比推理: ①由“若a,b,c∈R则(ab)c=a(bc)”类比推出“若a,b,c为三个向量则( = )”;
②“a,b为实数,若a2+b2=0则a=b=0”类比推出“z1 , z2为复数,若 ”;
③“在平面内,三角形的两边之和大于第三边”类比推出“在空间中,四面体的任意三个面的面积之和大于第四个面的面积”;
④“在平面内,过不在同一条直线上的三个点有且只有一个圆”类比推出“在空间中,过不在同一个平面上的四个点有且只有一个球”.
上述四个推理中,结论正确的个数有(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2
(1)求cosB;
(2)若a+c=6,△ABC的面积为2,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知0<a<1,函数f(x)=logax.
(1)若f(5a﹣1)≥f(2a),求实数a的最大值;
(2)当a= 时,设g(x)=f(x)﹣3x+2m,若函数g(x)在(1,2)上有零点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案