精英家教网 > 高中数学 > 题目详情
样本中共有5个个体,其值分别为.若该样本的平均值为1,则样本方差为
A.B.C.D.
D

试题分析:根据题意,由于样本中共有5个个体,其值分别为.若该样本的平均值为1,则可知a+0+1+2+3=5,a=-1,那么方差为,故答案为D.
点评:主要是考查了数据的特征数,均值和方差的求解,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

中国航母“辽宁舰”是中国第一艘航母,“辽宁”号以4台蒸汽轮机为动力,为保证航母的动力安全性,科学家对蒸汽轮机进行了170余项技术改进,增加了某项新技术,该项新技术要进入试用阶段前必须对其中的三项不同指标甲、乙、丙进行通过量化检测。假如该项新技术的指标甲、乙、丙独立通过检测合格的概率分别为。指标甲、乙、丙合格分别记为4分、2分、4分;若某项指标不合格,则该项指标记0分,各项指标检测结果互不影响。
(I)求该项技术量化得分不低于8分的概率;
(II)记该项新技术的三个指标中被检测合格的指标个数为随机变量X,求X的分布列与数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某社团组织名志愿者利用周末和节假日参加社会公益活动,活动内容是:1、到各社区宣传慰问,倡导文明新风;2、到指定的医院、福利院做义工,帮助那些需要帮助的人.各位志愿者根据各自的实际情况,选择了不同的活动项目,相关的数据如下表所示:
 
宣传慰问
义工
总计
20至40岁
11
16
27
大于40岁
15
8
23
总计
26
24
50
(1) 分层抽样方法在做义工的志愿者中随机抽取6名,年龄大于40岁的应该抽取几名?
(2) 上述抽取的6名志愿者中任取2名,求选到的志愿者年龄大于40岁的人数的数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.
(1)求乙至多击中目标2次的概率;
(2)记甲击中目标的次数为Z,求Z的分布列、数学期望和标准差.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为各局比赛的结果都相互独立,第局甲当裁判.
(I)求第局甲当裁判的概率;
(II)求前局中乙恰好当次裁判概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某食品加工厂甲,乙两个车间包装小食品,在自动包装传送带上每隔30分钟抽取一袋食品,称其重量并将数据记录如下:
甲:102  100  98  97  103  101  99
乙: 102  101  99  98  103  98   99
(1)食品厂采用的是什么抽样方法(不必说明理由)?
(2)根据数据估计这两个车间所包装产品每袋的平均质量;
(3)分析哪个车间的技术水平更好些?
附:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在某校高三学生的数学校本课程选课过程中,规定每位同学只能选一个科目。已知某班第一小组与第二小组各 有六位同学选择科目甲或科 目乙,情况如下表:
 
科目甲
科目乙
总计
第一小组
1
5
6
第二小组
2
4
6
总计
3
9
12
现从第一小组、第二小 组中各任选2人分析选课情况.
(1)求选出的4 人均选科目乙的概率;
(2)设为选出的4个人中选科目甲的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题14分)口袋内有)个大小相同的球,其中有3个红球和个白球.已知从
口袋中随机取出一个球是红球的概率是,且。若有放回地从口袋中连续地取四次球(每次只取一个球),在四次取球中恰好取到两次红球的概率大于
(Ⅰ)求
(Ⅱ)不放回地从口袋中取球(每次只取一个球),取到白球时即停止取球,记为第一次取到白球时的取球次数,求的分布列和期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(12分)设是一个离散型随机变量,其分布列如下表,试求随机变量的期望与方差
ξ
-1
0
1
P

1-2q[
q2
   

查看答案和解析>>

同步练习册答案