精英家教网 > 高中数学 > 题目详情
甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.
(1)求乙至多击中目标2次的概率;
(2)记甲击中目标的次数为Z,求Z的分布列、数学期望和标准差.
(1)   (2) Z的分布列如下表:
Z
0
1
2
3
P




   

解:(1)甲、乙两人射击命中的次数服从二项分布,故乙至多击中目标2次的概率为1-C333.
(2)P(Z=0)=C303
P(Z=1)=C313
P(Z=2)=C323
P(Z=3)=C333.
Z的分布列如下表:
Z
0
1
2
3
P




E(Z)=0×+1×+2×+3×
D(Z)=2×2×2×2×,∴.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:
测试指标





元件A
8
12
40
32]
8
元件B
7
18
40
29
6
(1)试分别估计元件A、元件B为正品的概率;
(2)生产一件元件A,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B,若是正品可盈利100元,若是次品则亏损20元,在(1)的前提下;
(i)求生产5件元件B所获得的利润不少于300元的概率;
(ii)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为,科目B每次考试成绩合格的概率均为.假设各次考试成绩合格与否均互不影响.
(1)求他不需要补考就可获得证书的概率;
(2)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求 的分布列及数学期望E.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

甲乙两人分别独立参加某高校自主招生面试,若甲、乙能通过面试的概率都是,则面试结束后通过的人数X的数学期望是(  )
A.B.C.1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

电视台综艺频道组织的闯关游戏,游戏规定前两关至少过一关才有资格闯第三关,闯关者闯第一关成功得3分,闯第二关成功得3分,闯第三关成功得4分.现有一位参加游戏者单独闯第一关、第二关、第三关成功的概率分别为,记该参加者闯三关所得总分为ξ.
(1)求该参加者有资格闯第三关的概率;
(2)求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙两名射手各打了10发子弹,其中甲击中环数与次数如下表
环数
5
6
7
8
9
10
次数
1
1
1
1
2
4
乙射击的概率分布列如表
环数
7
8
9
10
概率
0.2
0.3
p
0.1
(1)若甲,乙两人各打一枪,求共击中18环的概率及p的值;
(2)比较甲,乙两人射击水平的优劣.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在高中“自选模块”考试中,某考场的每位同学都选了一道数学题,第一小组选《数学史与不等式选讲》的有1人,选《矩阵变换和坐标系与参数方程》的有5人,第二小组选《数学史与不等式选讲》的有2人,选《矩阵变换和坐标系与参数方程》的有4人,现从第一、第二两小组各任选2人分析得分情况.
(1)求选出的4人均为选《矩阵变换和坐标系与参数方程》的概率;
(2)设X为选出的4个人中选《数学史与不等式选讲》的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

气象部门提供了某地区今年六月份(30天)的日最高气温的统计表如下:
日最高气温t(单位:℃)
t≤22
22<t≤28
28<t≤32
t>32
天数
6
12
Y
Z
由于工作疏忽,统计表被墨水污染,YZ数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.9.
某水果商根据多年的销售经验,六月份的日最高气温t(单位:℃)对西瓜的销售影响如下表:
日最高气温t(单位:℃)
t≤22
22<t≤28
28<t≤32
t>32
日销售额X(单位:千元)
2
5
6
8
(1)求YZ的值;
(2)若视频率为概率,求六月份西瓜日销售额的期望和方差;
(3)在日最高气温不高于32℃时,求日销售额不低于5千元的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

样本中共有5个个体,其值分别为.若该样本的平均值为1,则样本方差为
A.B.C.D.

查看答案和解析>>

同步练习册答案