精英家教网 > 高中数学 > 题目详情
3.在数列{an}中,a1=-$\frac{1}{2}$,2an=an-1-n-1(n≥2,n∈N+),设bn=an+n.
(Ⅰ)证明:数列{bn}是等比数列;
(Ⅱ)求数列{nbn}的前n项和Tn
(Ⅲ)若cn=($\frac{1}{2}$)n-an,Pn为数列{$\frac{{c}_{n}^{2}+{c}_{n}+1}{{c}_{n}^{2}+{c}_{n}}$}的前n项和,求不超过P2015的最大的整数.

分析 (Ⅰ)根据数列的递推公式即可证明,
(Ⅱ)利用错位相减法即可求出,
(Ⅲ)利用裂项求和即可求出.

解答 解:(Ⅰ)∵2an=an-1-n-1(n≥2,n∈N+),
∴2(an+n)=an-1+n-1,
∴2bn=bn-1
∵b1=a1+1=$\frac{1}{2}$,
∴{bn}是以$\frac{1}{2}$为首项以$\frac{1}{2}$为公比的等比数列,
(Ⅱ)由(Ⅰ)可得bn=($\frac{1}{2}$)n
∴nbn=n($\frac{1}{2}$)n
∴Tn=1×$\frac{1}{2}$+2×($\frac{1}{2}$)2+3×($\frac{1}{2}$)3+…+n($\frac{1}{2}$)n
∴$\frac{1}{2}$Tn=1×($\frac{1}{2}$)2+2×($\frac{1}{2}$)3+3×($\frac{1}{2}$)4+…+(n-1)($\frac{1}{2}$)n+n($\frac{1}{2}$)n+1
∴$\frac{1}{2}$Tn=$\frac{1}{2}$+($\frac{1}{2}$)2+($\frac{1}{2}$)3+($\frac{1}{2}$)4+…+($\frac{1}{2}$)n-n($\frac{1}{2}$)n+1
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-n($\frac{1}{2}$)n+1=1-($\frac{1}{2}$)n-n($\frac{1}{2}$)n+1=1-$\frac{n+2}{{2}^{n+1}}$,
∴Tn=2-$\frac{n+2}{{2}^{n}}$
(Ⅲ)由(Ⅰ)知,an=($\frac{1}{2}$)n-n,
∴cn=($\frac{1}{2}$)n-an=n,
∴$\frac{{c}_{n}^{2}+{c}_{n}+1}{{c}_{n}^{2}+{c}_{n}}$=$\frac{{n}^{2}+n+1}{{n}^{2}+n}$=1+$\frac{1}{n(n+1)}$=1+$\frac{1}{n}$-$\frac{1}{n+1}$,
∴pn=n+(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$)=n+1-$\frac{1}{n+1}$,
∴p2015=2016-$\frac{1}{2016}$<2016,
故不超过P2015的最大的整数2016.

点评 本题考查了数列的通项公式公式的求法和错位相减法求和和裂项求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.化简$\sqrt{1+2sin5cos5}+\sqrt{1-2sin5cos5}$,得到(  )
A.-2sin5B.-2cos5C.2sin5D.2cos5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给出如下三个命题:
①若“p且q”为假命题,则p、q均为假命题;
②命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”;
③“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1”.
其中不正确的命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一个半径为2的球体经过切割后,剩余部分几何体的三视图如图所示,则该几何体的体积为8π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过平面区域$\left\{\begin{array}{l}{4x-y+3\sqrt{2}≥0}\\{y+\sqrt{2}≥0}\\{x+y+\sqrt{2}≤0}\end{array}\right.$内一点P作圆O:x2+y2=1的两条切线,切点分别为A、B,记∠APB=α,则α的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知△ABC的内角A,B,C所对的边为a,b,c,A=60°,a=$\sqrt{13}$,b=1,则c=4,$\frac{a+b+c}{sinA+sinB+sinC}$=$\frac{2\sqrt{39}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设点P(x,y)在圆x2+(y-1)2=1上.
(1)求$\sqrt{(x-2)^{2}+{y}^{2}}$的最小值;
(2)求$\frac{y+2}{x+1}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知0<α<$\frac{π}{2}$,$\frac{π}{2}$<β<π,且cos(α+$\frac{π}{4}$)=$\frac{1}{3}$,cos($\frac{π}{4}$-$\frac{β}{2}$)=$\frac{{\sqrt{3}}}{3}$,
(1)求cosβ的值;            
(2)求cos(2α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=alnx-x在区间(1,2)上单调递增,则实数a的取值范围是[2,+∞).

查看答案和解析>>

同步练习册答案