分析 (1)$\sqrt{(x-2)^{2}+{y}^{2}}$,表示(x,y)与(2,0)的距离,圆心与(2,0)的距离为$\sqrt{5}$,即可求出$\sqrt{(x-2)^{2}+{y}^{2}}$的最小值是$\sqrt{5}$-1.
(2)设$\frac{y+2}{x+1}$=k,即kx-y-2+k=0,利用圆心到直线的距离小于等于半径,即可得出结论.
解答
解:(1)$\sqrt{(x-2)^{2}+{y}^{2}}$,表示(x,y)与(2,0)的距离,圆心与(2,0)的距离为$\sqrt{5}$,
∴$\sqrt{(x-2)^{2}+{y}^{2}}$的最小值是$\sqrt{5}$-1.
(2)设$\frac{y+2}{x+1}$=k,即kx-y-2+k=0,
圆心到直线的距离$\frac{|k-3|}{\sqrt{{k}^{2}+1}}$≤1,∴k≥$\frac{4}{3}$,
∴$\frac{y+2}{x+1}$的最小值是$\frac{4}{3}$.
点评 本题考查直线与圆的位置关系,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 两直线 | B. | 椭圆 | C. | 双曲线 | D. | 抛物线 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-2<x<2} | B. | {x|-2<x<-1} | C. | {x|1<x<2} | D. | {x|-1<x<1} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com