精英家教网 > 高中数学 > 题目详情
13.若函数f(x)=alnx-x在区间(1,2)上单调递增,则实数a的取值范围是[2,+∞).

分析 通过解f′(x)求单调区间,转化为恒成立问题求a的取值范围.

解答 解:∵f(x)=alnx-x,∴f′(x)=$\frac{a}{x}$-1.
又∵f(x)在(1,2)上单调递增,
∴$\frac{a}{x}$-1≥0在x∈(1,2)上恒成立,
∴a≥xmax=2,∴a∈[2,+∞).
故答案为:[2,+∞)

点评 已知函数单调性,求参数范围问题的常见解法;设函数f(x)在(a,b)上可导,若f(x)在(a,b)上是增函数,则可得f′(x)≥0,从而建立了关于待求参数的不等式,同理,若f(x)在(a,b)上是减函数,则可得f′(x)≤0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在数列{an}中,a1=-$\frac{1}{2}$,2an=an-1-n-1(n≥2,n∈N+),设bn=an+n.
(Ⅰ)证明:数列{bn}是等比数列;
(Ⅱ)求数列{nbn}的前n项和Tn
(Ⅲ)若cn=($\frac{1}{2}$)n-an,Pn为数列{$\frac{{c}_{n}^{2}+{c}_{n}+1}{{c}_{n}^{2}+{c}_{n}}$}的前n项和,求不超过P2015的最大的整数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合A={x|-1<x<2},B={x|-2<x<1},则集合A∩B=(  )
A.{x|-2<x<2}B.{x|-2<x<-1}C.{x|1<x<2}D.{x|-1<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.4+2$\sqrt{2}$B.4+3$\sqrt{2}$C.8D.2+$\sqrt{2}$+$\sqrt{5}$+$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的可导函数f(x),当x∈(1,+∞)时,(x-1)f′(x)-f(x)>0恒成立,若a=f(2),b=$\frac{1}{2}$f(3),c=$\frac{1}{\sqrt{3}-1}$f(3),则a,b,c的大小关系为(  )
A.c<a<bB.a<b<cC.b<a<cD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某班甲、乙两名学生的高考备考成绩的茎叶图如图所示,分别求两名学生成绩的中位数和平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数y=xf′(x)的图象如图所示,则y=f(x)的图象大致是下面四个图象中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,△ABC内接于直径为BC的圆O,过点A作圆O的切线交CB的延长线于点P,∠CAB的角平分线AE交BC和圆O于点D、E,且PA=2PB=10.
(1)求$\frac{AC}{AB}$的比值;
(2)求AD•DE的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,是某几何体的三视图,其中矩形的高为圆的半径,若该几何体的体积是$\frac{52π}{3}$,则此几何体的表面积为(  )
A.33πB.34πC.36πD.42π

查看答案和解析>>

同步练习册答案