(本小题满分分)
已知函数.(为常数,)
(Ⅰ)若是函数的一个极值点,求的值;
(Ⅱ)求证:当时,在上是增函数;
(Ⅲ)若对任意的,总存在,使不等式成立,求实数的取值范围.
科目:高中数学 来源: 题型:解答题
(本小题满分14分)设函数,的两个极值点为,线段的中点为.
(1) 如果函数为奇函数,求实数的值;当时,求函数图象的对称中心;
(2) 如果点在第四象限,求实数的范围;
(3) 证明:点也在函数的图象上,且为函数图象的对称中心.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知:函数是定义在上的偶函数,当时,为实数).
(1)当时,求的解析式;
(2)若,试判断上的单调性,并证明你的结论;
(3)是否存在,使得当有最大值1?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分15分)
已知:函数(a、b、c是常数)是奇函数,且满足.
(1)求a、b、c的值;
(2)试判断函数f(x)在区间(0,)上的单调性并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
定义域为R,且对任意实数都满足不等式的所有函数组成的集合记为M,例如,函数。
(1)已知函数,证明:;
(2)写出一个函数,使得,并说明理由;
(3)写出一个函数,使得数列极限
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)
医学上为研究某种传染病传播过程中病毒细胞的发展规律及其预防,将病毒细胞注入一只小白鼠体内进行实验,经检测,病毒细胞在体内的总数与天数的关系记录如下表.已知该种病毒细胞在小白鼠体内的个数超过的时候小白鼠将死亡.但注射某种药物,将可杀死此时其体内该病毒细胞的.
(Ⅰ) 为了使小白鼠在实验过程中不死亡,第一次最迟应在何时注射该种药物?(精确到天)
(Ⅱ)第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(精确到天)
(参考数据:,)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题12分)已知集合是同时满足下列两个性质的函数组成的集合:
①在其定义域上是单调增函数或单调减函数;
②在的定义域内存在区间,使得在上的值域是.
(1)判断函数是否属于集合?并说明理由.若是,则请求出区间;
(2)若函数,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com