精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x+数学公式+b(x≠0),其中a、b为实常数.
(1)若方程f(x)=3x+1有且仅有一个实数解x=2,求a、b的值;
(2)设a>0,x∈(0,+∞),写出f(x)的单调区间,并对单调递增区间用函数单调性定义进行证明;
(3)若对任意的a∈[数学公式,2],不等式f(x)≤10在x∈[数学公式,1]上恒成立,求实数b的取值范围.

解:(1)由已知,方程)=x++b=3x+1有且仅有一个解x=2,
因为x≠0,故原方程可化为2x2+(1-b)x-a=0,
所以,…解得a=-8,b=9.
(2)当a>0,x>0时,f(x)在区间(0,)上是减函数,在(,+∞)上是增函数.
证明:设x1,x2∈(,+∞),且x1<x2
f(x2)-f(x1)=x2+-x1-=(x2-x1)•
因为x1,x2∈(,+∞),且x1<x2
所以x2-x1>0,x1x2>a,
所以f(x2)-f(x1)>0.
所以f(x)在(,+∞)上是增函数.
(3)因为f(x)≤10,故x∈[,1]时有f(x)max≤10,
由(2),知f(x)在区间[,1]的最大值为f()与f(1)中的较大者.
所以,对于任意的a∈[,2],不等式f(x)≤10在x∈[,1]上恒成立,当且仅当
对任意的a∈[,2]成立.
从而得到b≤. 
所以满足条件的b的取值范围是(-∞,]. 

分析:(1)依题意,原方程可化为2x2+(1-b)x-a=0,由即可解得a、b的值;
(2)当a>0,x>0时,f(x)在区间(0,)上是减函数,在(,+∞)上是增函数;利用定义证明时,先设x1,x2∈(,+∞),且x1<x2,再作差f(x2)-f(x1)后化积讨论即可;
(3)依题意得,可解得到b≤,从而可得实数b的取值范围.
点评:本题考查函数恒成立问题,考查函数单调性的判断与证明,考查方程思想与等价转化思想的综合运用,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案