【题目】已知函数
的最小正周期为
,将函数
的图像向右平移
个单位长度,再向下平移
个单位长度,得到函数
的图像.
(1)求函数
的单调递增区间;
(2)在锐角
中,角
的对边分别为
,若
,
,求
面积的最大值.
【答案】(1)
(2)![]()
【解析】
(1)利用三角恒等变换化简函数f(x)的解析式,再根据正弦函数的单调求得函数f(x)的单调递增区间.
(2)先利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,在锐角△ABC中,由g(
)=0,求得A的值,再利用余弦定理、基本不等式,求得bc的最大值,可得△ABC面积的最大值.
(1)由题得:函数![]()
=![]()
=![]()
,
由它的最小正周期为
,得
,
∴![]()
由
,得![]()
故函数
的单调递增区间是![]()
(2)将函数
的图像向右平移
个单位长度,再向下平移
个单位长度,得到函数
的图像,
在锐角
中,角
的对边分别为
,
若
,可得
,∴
.
因为
,由余弦定理,得
,
∴
,
∴
,当且仅当
时取得等号.
∴
面积
,
故
面积的最大值为![]()
科目:高中数学 来源: 题型:
【题目】设n 为不小于3的正整数,集合
,对于集合
中的任意元素
,
记![]()
(Ⅰ)当
时,若
,请写出满足
的所有元素![]()
(Ⅱ)设
且
,求
的最大值和最小值;
(Ⅲ)设S是
的子集,且满足:对于S中的任意两个不同元素
,有
成立,求集合S中元素个数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱
的侧面
是平行四边形,
,平面
平面
,且
分别是
的中点.
![]()
(Ⅰ)求证:
;
(Ⅱ)求证:
平面
;
(Ⅲ)在线段
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥中
,底面
为菱形,
,
平面
,
、
分别是
、
上的中点,直线
与平面
所成角的正弦值为
,点
在
上移动.
![]()
(Ⅰ)证明:无论点
在
上如何移动,都有平面
平面
;
(Ⅱ)求点
恰为
的中点时,二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于
的二项式
的展开式的二项式系数之和为1024,常数项为180.
(1)求
和
的值;
(2)求展开式中的无理项.(不需求项的表达式,指出无理项的序号即可)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问某地100名高中学生在选择座位时是否挑同桌,得到如下
列联表:
男生 | 女生 | 合计 | |
挑同桌 | 30 | 40 | 70 |
不挑同桌 | 20 | 10 | 30 |
总计 | 50 | 50 | 100 |
(1)从这50名男生中按是否挑同桌采取分层抽样的方法抽取一个容量为5的样本,现从这5名学生中随机选取3名做深度采访,求这3名学生中恰有2名挑同桌的概率;
(2)根据以上
列联表,是否有
以上的把握认为“性别与在选择座位时是否挑同桌”有关?
下面的临界值表供参考:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
(参考公式:
,其中.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com