精英家教网 > 高中数学 > 题目详情
10.已知角α的终边上一点是P(-4,3),则sinα=$\frac{3}{5}$;cosα=-$\frac{4}{5}$.

分析 由条件利用任意角的三角函数的定义,求得sinα 和cosα 的值.

解答 解:根据角α的终边上一点是P(-4,3),可得x=-4,y=3,r=|OP|=5,
∴sinα=$\frac{y}{r}$=$\frac{3}{5}$,cosα=$\frac{x}{r}$=$\frac{-4}{5}$=-$\frac{4}{5}$,
故答案为:$\frac{3}{5}$,-$\frac{4}{5}$.

点评 本题主要考查任意角的三角函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.直接写出下列不等式的解集
$\left\{\begin{array}{l}{2-x<0}\\{1+x>5}\end{array}\right.$(4,+∞)   x2>1(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.把函数y=sinx的图象所有点的横坐标缩短到原来的$\frac{1}{2}$(纵坐标不变)而得到的图象对应的解析式可以是(  )
A.y=sin2xB.y=sin$\frac{1}{2}$xC.y=2sinxD.y=$\frac{1}{2}$sinx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a>b>0.在下列各式中用正确的不等号填空:
A.3a>3b  B.0.3a<0.3b  C.log0.3a<log0.3b  D.log3a>log3b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知sinα+cosα=$\frac{7}{13}$,则sinαcosα=$\frac{60}{169}$;sin2α=$\frac{120}{169}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求证:sinα•sinβ=$\frac{1}{2}$[cos(α-β)-cos(α+β)].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=2sinx+cosx的最小值为-$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知直线的方程为$\frac{x+1}{3}$=$\frac{y-3}{-2}$,则该直线必经过点(  )
A.(3,-2)B.(-3,2)C.(1,3)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知几何体的三视图如图,则这个几何体自上而下依次是(  )
A.四棱台,圆台B.四棱台,四棱台C.四棱柱,四棱柱D.不能判断

查看答案和解析>>

同步练习册答案