分析 利用余弦定理表示出cosC,把已知的等式变形后代入求出cosC的值,由C的范围,利用特殊角的三角函数值即可求出角C的度数.
解答 解:在△ABC中,由c2=a2+b2-$\sqrt{2}$ab,得到a2+b2-c2=$\sqrt{2}$ab,
则根据余弦定理得:
cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{\sqrt{2}ab}{2ab}$=$\frac{\sqrt{2}}{2}$,
又C∈(0,180°),
则角C的大小为45°.
故答案为:45°.
点评 此题考查了余弦定理的应用,要求学生熟练掌握余弦定理的特征,牢记特殊角的三角函数值.学生做题时注意角度的范围,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第12项 | B. | 第13项 | C. | 第14项 | D. | 第25项 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{4}-\frac{y^2}{5}=1$ | B. | $\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1(x≥2) | C. | $\frac{x^2}{9}-\frac{y^2}{27}=1$ | D. | $\frac{{x}^{2}}{9}-\frac{{y}^{2}}{27}$=1(x≥3) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com