精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,四棱锥P—ABCD中,底面ABCD,底面ABCD为正方形,E为PC的中点,点G在BC边上且
(Ⅰ)求证:平面PCD;
(Ⅱ)点M在AD边上,若PA//平面MEG,
的值。
(Ⅰ)证明:∵底面
┅┅┅┅┅┅┅┅┅┅┅┅┅┅2分
∵底面为正方形,∴
┅┅┅┅┅┅┅┅┅┅┅┅┅┅3分

平面.┅┅┅┅┅┅┅┅┅┅5分
(Ⅱ)解:连结,取中点,连结
,平面平面
,┅┅┅┅┅┅┅┅8分
中,E的中点,
所以点OAC的中点,
在正方形中,中点,则MG中点,
,     ┅┅┅┅┅┅┅┅┅┅┅┅┅┅10分

所以.              ┅┅┅┅┅┅┅┅┅┅┅┅┅┅12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题12分)
如图,已知为平行四边形,,点上,相交于.现将四边形沿折起,使点在平面上的射影恰在直线上.
(Ⅰ)求证:平面
(Ⅱ)求折后直线DN与直线BF所成角的余弦值;
(Ⅲ)求三棱锥N—ABF的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)
正方体的棱长为的交点,的中点.
(Ⅰ)求证:直线∥平面
(Ⅱ)求证:平面
(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)

如图,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面A1ABB1.
(Ⅰ)求证:AB⊥BC;
(Ⅱ)若直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ.判断θ与φ的大小关系,并予以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在半径为13的球面上有A,B,C三点,AB=6,BC=8,CA=10,求过A,B,C三点的截面与球心的距离。(10分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为圆柱下底面内任一不过圆心的弦,过和上底面圆心作圆柱的一截面,则这个截面是 (   )
A.三角形B.矩形C.梯形D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

经过同一条直线上的3个点的平面
A.有且只有一个B.有且只有3个
C.有无数多个D.不存在

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,则下列四个命题:
(1)若,则;(2)若,则
(3)若,则;(4)若,则
其中正确命题个数是( )个。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

四棱台的12条棱中,与棱异面的棱共有
A.3条B.4条 C.6条 D.7条

查看答案和解析>>

同步练习册答案