分析 利用换元法,将原函数的值域转化为三角函数的值域问题,对三角函数式进行变形化简后,求出三角函数的值域,得到本题结论.
解答 解:函数y=$\sqrt{1-\frac{{x}^{2}}{4}}$+2x,
令:x=2cosα,[0,π],则函数y=$\sqrt{1-\frac{{x}^{2}}{4}}$+2x转化为:y=sinα+4cosα;
化简得:y=$\sqrt{17}$sin(α+φ),sinφ=$\frac{4}{\sqrt{17}}$,
∵$\frac{π}{2}$>φ>0,
∴当α=π时,π<α+φ<$\frac{3}{2}$π.
故得y=$\sqrt{17}$sin(α+φ)=-$\sqrt{17}$×sinφ=-4.
当α+φ=$\frac{π}{2}$时,y取得最大值$\sqrt{17}$.
故得函数y=$\sqrt{1-\frac{{x}^{2}}{4}}$+2x的值域为[-4,$\sqrt{17}$];
故答案为:[-4,$\sqrt{17}$];
点评 本题考查了函数值域的求法.高中函数值域求法有:1、观察法,2、配方法,3、反函数法,4、判别式法;5、换元法,6、数形结合法,7、不等式法,8、分离常数法,9、单调性法,10、利用导数求函数的值域,11、最值法,12、构造法,13、比例法.要根据题意选择.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{6}$或$\frac{5π}{6}$ | D. | $\frac{π}{3}$或$\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a2013>a2016 | B. | a2014<a2016 | C. | a2014>a2015 | D. | a2016>a2015 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 井号I | 1 | 2 | 3 | 4 | 5 | 6 |
| 坐标(x,y)(km) | (2,30) | (4,30) | (5,60) | (6,50) | (8,70) | (1,y) |
| 钻井深度(km) | 2 | 4 | 5 | 6 | 8 | 10 |
| 出油量(L) | 40 | 70 | 110 | 90 | 160 | 205 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com