精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
A﹑B﹑C是直线上的三点,向量满足:-[y+2+ln(x+1)·= ;
(Ⅰ)求函数y=f(x)的表达式;
(Ⅱ)若x>0, 证明f(x)>
(Ⅲ)当时,x及b都恒成立,求实数m的取值范围。

(I)f(x)=ln(x+1);(Ⅱ)令g(x)=f(x)-,由
∵x>0∴∴g(x)在 (0,+∞)上是增函数,故g(x)>g(0)=0,即f(x)> ;
(III)m≤-3或m≥3.

解析试题分析:(I)由三点共线知识,∵,∴,∵A﹑B﹑C三点共线,

.∴
∴f(x)=ln(x+1)………………4分
(Ⅱ)令g(x)=f(x)-,由
∵x>0∴∴g(x)在 (0,+∞)上是增函数,故g(x)>g(0)=0,即f(x)> ;…8分
(III)原不等式等价于,
令h(x)= =
当x∈[-1,1]时,[h(x)]max="0," ∴m2-2bm-3≥0,令Q(b)= m2-2bm-3,则由Q(1)≥0及Q(-1)≥0解得m≤-3或m≥3. …………12分
考点:本题考查了向量的运算及导函数的运用
点评:,解析几何综合题主要考查直线和圆锥曲线的位置关系以及范围、最值、定点、定值、存在性等问题,近几年高考题中经常出现了以函数、平面向量、导数、数列、不等式、平面几何、数学思想方法等知识为背景,综合考查运用圆锥曲线的有关知识分析问题、解决问题的能力

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知,的夹角为60o, , ,当实数为何值时,⑴   ⑵

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平面直角坐标系中,O为坐标原点,给定两点A(1,0),B(0,一2),点C满足,其中,且
(1)求点C的轨迹方程;
(2)设点C的轨迹与椭圆交于两点M,N,且以MN为直径的圆过原点,求证:为定值;
(3)在(2)的条件下,若椭圆的离心率不大于,求椭圆长轴长的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为两个不共线向量。
(1)试确定实数k,使k+k共线;
(2),求使三个向量的终点在同一条直线上的的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(11分)已知向量
(Ⅰ)求的值;  
(Ⅱ)若,且,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
向量
(1)若a为任意实数,求g(x)的最小正周期;
(2)若g(x)在[o,)上的最大值与最小值之和为7,求a的值,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平面上三个向量的模均为1,它们相互之间的夹角均为
(I)求证:
(II)若,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设A,B,C是圆x2+y2=1上不同的三个点,且·=0,存在实数λ,μ,使得=λ+μ,实数λ,μ的关系为(  )

A.λ2+μ2=1 B.=1
C.λ·μ=1 D.λ+μ=1

查看答案和解析>>

同步练习册答案