【题目】为了研究不同性别在处理多任务时的表现差异,召集了男女志愿者各200名,要求他们同时完成多个任务,包括解题、读地图、接电话.下图表示了志愿者完成任务所需的时间分布.以下结论,对志愿者完成任务所需的时间分布图表理解正确的是( )
![]()
①总体看女性处理多任务平均用时更短;
②所有女性处理多任务的能力都要优于男性;
③男性的时间分布更接近正态分布;
④女性处理多任务的用时为正数,男性处理多任务的用时为负数.
A.①④B.②③C.①③D.②④
科目:高中数学 来源: 题型:
【题目】已知圆O:x2+y2=3上的一动点M在x轴上的投影为N,点P满足
.
(1)求动点P的轨迹C的方程;
(2)若直线l与圆O相切,且交曲线C于点A,B,试求|AB|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,b,c分别是角A,B,C的对边,且acosC=(2b﹣c)cosA.
(1)若
3,求△ABC的面积;
(2)若∠B<∠C,求2cos2B+cos2C的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,且acos C+
asin C-b-c=0.
![]()
(1)求A;
(2)若AD为BC边上的中线,cos B=
,AD=
,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的方程为
,过点
的直线
的参数方程为
(
为参数).
(Ⅰ)求直线
的普通方程与曲线
的直角坐标方程;
(Ⅱ)若直线
与曲线
交于
、
两点,求
的值,并求定点
到
,
两点的距离之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线T的焦点为F,准线为l,过F的直线m与T交于A,B两点,C,D分别为A,B在l上的射影,M为AB的中点,若m与l不平行,则△CMD是( )
A. 等腰三角形且为锐角三角形
B. 等腰三角形且为钝角三角形
C. 等腰直角三角形
D. 非等腰的直角三角形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
的离心率为
,右准线方程为
,
、
分别是椭圆
的左、右顶点,过右焦点
且斜率为
的直线
与椭圆
相交于
,
两点.
![]()
(1)求椭圆
的标准方程.
(2)记
、
的面积分别为
、
,若
,求
的值;
(3)设线段
的中点为
,直线
与右准线相交于点
,记直线
、
、
的斜率分别为
、
、
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,M是椭圆C的上顶点,
,F2是椭圆C的焦点,
的周长是6.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过动点P(1,t)作直线交椭圆C于A,B两点,且|PA|=|PB|,过P作直线l,使l与直线AB垂直,证明:直线l恒过定点,并求此定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com