精英家教网 > 高中数学 > 题目详情
7.若$a=\int_0^2{xdx}$,则二项式${(x-\frac{a+1}{x})^6}$展开式中的常数项是(  )
A.20B.-20C.-540D.540

分析 求定积分得a的值,再利用二项式展开式的通项公式求出展开式的常数项.

解答 解:$a=\int_0^2{xdx}$=$\frac{1}{2}$x2${|}_{0}^{2}$=$\frac{1}{2}$×22=2,
∴二项式${(x-\frac{a+1}{x})^6}$=${(x-\frac{3}{x})}^{6}$展开式中,
通项公式为Tr+1=${C}_{6}^{r}$•x6-r•${(-\frac{3}{x})}^{r}$=(-3)r•${C}_{6}^{r}$•x6-2r
令6-2r=0,解得r=3;
∴展开式的常数项为:
T4=(-3)3•${C}_{6}^{3}$=-540.
故选:C.

点评 本题考查了定积分的计算问题,也考查了二项式展开式的通项公式应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在四边形ABCD中,∠BAD=120°,∠BCD=60°,cosD=-$\frac{1}{7}$,AD=DC=2.
(Ⅰ)求cos∠DAC及AC的长;
(Ⅱ)求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.锐角三角形ABC的三边长a,b,c成等差数列,且a2+b2+c2=21,则实数b的取值范围是(  )
A.$({\sqrt{6},\sqrt{7}}]$B.$({0,\sqrt{7}}]$C.$({\frac{{2\sqrt{42}}}{5},\sqrt{7}}]$D.(6,7]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a,b,c分别为△ABC三个内角A、B、C的对边,c=2,且(2+b)(sinC-sinB)=a(sinA-sinB).
(Ⅰ)求∠C的大小;
(Ⅱ)求△ABC周长l的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{3}$,过右焦点F2(c,0)垂直于x轴的直线与椭圆交于A,B两点且|AB|=$\frac{4\sqrt{3}}{3}$,又过左焦点F1(-c,0)任作直线l交椭圆于点M
(1)求椭圆C的方程
(2)椭圆C上两点A,B关于直线l对称,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=|x+1|+x-m的最小值是-3.
(1)求m的值;
(2)若$\frac{1}{a}+\frac{1}{b}=2$,是否存在正实数a,b满足$(a+1)(b+1)=\frac{7}{2}$?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.数列{an}中,若存在ak,使得“ak>ak-1且ak>ak+1”成立(其中k≥2,k∈N*),ak则称为{an}的一个H值.现有如下数列:
①an=1-2n
②an=sinn
③an=$\frac{n-2}{{e}^{n-3}}$
④an=lnn-n
则存在H值的数列的序号为(  )
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.${log_2}8+{log_2}\frac{1}{2}$=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设直角坐标系xoy平面内的三点A(1,-2),B(a,-1),C(-b,0).其中a>0,b>0.若A,B,C三点共线.则$\frac{1}{a}$+$\frac{2}{b}$的最小值为(  )
A.4B.6C.8D.9

查看答案和解析>>

同步练习册答案