精英家教网 > 高中数学 > 题目详情
18.已知$\overrightarrow{OA}$=(2,0),$\overrightarrow{OB}$=(1,$\sqrt{3}$),若(1-λ)$\overrightarrow{OA}$+λ$\overrightarrow{OB}$-$\overrightarrow{OC}$=$\overrightarrow{0}$(λ∈R),则|$\overrightarrow{OC}$|的最小值为$\sqrt{3}$.

分析 求出$\overrightarrow{OC}$的坐标,得出|$\overrightarrow{OC}$|关于λ的函数,利用二次函数的性质得出最小值.

解答 解:∵(1-λ)$\overrightarrow{OA}$+λ$\overrightarrow{OB}$-$\overrightarrow{OC}$=$\overrightarrow{0}$,
∴$\overrightarrow{OC}$=(1-λ)$\overrightarrow{OA}$+$λ\overrightarrow{OB}$=(2-λ,$\sqrt{3}λ$),
∴|$\overrightarrow{OC}$|=$\sqrt{(2-λ)^{2}+3{λ}^{2}}$=$\sqrt{4{λ}^{2}-4λ+4}$=2$\sqrt{(λ-\frac{1}{2})^{2}+\frac{3}{4}}$≥2×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查了平面向量的模长计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.甲、乙两个袋子中,各放有大小、形状和个数相同的小球若干.每个袋子中标号为0的小球为1个,标号为1的2个,标号为2的n个.从一个袋子中任取两个球,取到的标号都是2的概率是$\frac{1}{10}$.
(Ⅰ)求n的值;
(Ⅱ)从甲袋中任取两个球,已知其中一个的标号是1的条件下,求另一个标号也是1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=sin(x+$\frac{π}{6}$),其中x∈[-$\frac{π}{3}$,$\frac{π}{2}$],则f(x)的值域是[-$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow a=({1,2sinθ}),\overrightarrow b=({sin({θ+\frac{π}{3}}),1}),θ∈R$.
(1)若$\overrightarrow a⊥\overrightarrow b$,求tanθ的值;
(2)若$\overrightarrow a∥\overrightarrow b$,且$θ∈[{0,\frac{π}{2}}]$,求角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,下列说法正确的是(  )
A.函数f(x)的图象关于直线x=-$\frac{2π}{3}$对称
B.函数f(x)的图象关于点(-$\frac{11π}{12}$,0)对称
C.若方程f(x)=m在[-$\frac{π}{2}$,0]上有两个不相等的实数根,则实数m∈(-2,-$\sqrt{3}$]
D.将函数f(x)的图象向左平移$\frac{π}{6}$个单位可得到一个偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\sqrt{3}$cos4x+2sinxcosx-$\sqrt{3}$sin4x.
(1)当x∈[0,$\frac{π}{2}$]时,求f(x)的最大值、最小值以及取得最值时的x值;
(2)设g(x)=3-2m+mcos(2x-$\frac{π}{6}$)(m>0),若对于任意x1∈[0,$\frac{π}{4}$],都存在x2∈[0,$\frac{π}{4}$],使得f(x1)=g(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点到右焦点的距离为$\sqrt{3}$+$\sqrt{2}$,椭圆上的点到右焦点的距离的最小值为$\sqrt{3}$-$\sqrt{2}$.
(1)求椭圆C的方程;
(2)设斜率为1的直线l经过椭圆上顶点,并与椭圆交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数$f(x)=\frac{x^2}{2}-klnx$.
(1)若k∈R,求f(x)的单调区间;
(2)若k>0,讨论f(x)当$x∈(1,\sqrt{e})$时的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=ex-e-x(x∈R).
(1)若g(x)=f(x)-f(2-x),解不等式g(2x+1)+g(x)>0;
(2)若函数h(x)=mf'(x)+f(x)-ex-m+1存在零点,求m的取值范围.

查看答案和解析>>

同步练习册答案