精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=sin(x+$\frac{π}{6}$),其中x∈[-$\frac{π}{3}$,$\frac{π}{2}$],则f(x)的值域是[-$\frac{1}{2}$,1].

分析 根据函数f(x)的解析式,结合正弦函数的单调性,即可求出f(x)在x∈[-$\frac{π}{3}$,$\frac{π}{2}$]时的值域.

解答 解:函数f(x)=sin(x+$\frac{π}{6}$),
当x∈[-$\frac{π}{3}$,$\frac{π}{2}$]时,x+$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{2π}{3}$],
∴sin(x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,1];
且x=-$\frac{π}{3}$时,f(x)取得最小值-$\frac{1}{2}$,
x=$\frac{π}{3}$时,f(x)取得最大值1;
∴f(x)的值域是[-$\frac{1}{2}$,1].
故答案为:[-$\frac{1}{2}$,1].

点评 本题考查了三角函数的图象与性质的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow a$,$\overrightarrow b$满足$|\overrightarrow a|$=1,|$\overrightarrow b$|=2,$(3\overrightarrow a-\overrightarrow b)$⊥$(\overrightarrow a+\overrightarrow b)$,则向量$\overrightarrow a$与向量$\overrightarrow b$夹角的余弦值为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知2cosθ+sinθ=0,且θ∈(0,π).
(Ⅰ)分别求tanθ,sinθ,cosθ的值;
(Ⅱ)若sin(θ-φ)=$\frac{{\sqrt{10}}}{10}$,$\frac{π}{2}$<φ<π,求cosφ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.条件“x=1”是条件“x2-1=0”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(文科做)设全集是实数集R,A={x|x2+x-6≤0},B={x|x2+a<0}.
(1)当a=-4时,求A∩B和A∪B;
(2)若A∩B=B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.求值$C_n^{4-n}+C_{n+1}^{9-n}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=|{\overrightarrow b}|=2$,且$\overrightarrow a•({\overrightarrow b-\overrightarrow a})=-6$,则$\overrightarrow a,\overrightarrow b$的夹角是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$\overrightarrow{OA}$=(2,0),$\overrightarrow{OB}$=(1,$\sqrt{3}$),若(1-λ)$\overrightarrow{OA}$+λ$\overrightarrow{OB}$-$\overrightarrow{OC}$=$\overrightarrow{0}$(λ∈R),则|$\overrightarrow{OC}$|的最小值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某学校高一、高二、高三年级的学生人数之比为2:3:5,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为150的样本,则应从高二年级抽取45名学生.

查看答案和解析>>

同步练习册答案