精英家教网 > 高中数学 > 题目详情

如图, 已知单位圆上有四点, 分别设的面积为.

(1)用表示
(2)求的最大值及取最大值时的值.

(1),
(2)

解析试题分析:解(1)根据三角函数的定义, 知
所以, 所    
. 3分
又因为四边形OABC的面积=,
所以.  6分
(2)由(1)知.  9分
因为, 所以, 所以,
所以的最大值为, 此时的值为.  12分
考点:三角函数的性质
点评:主要是考查了三角函数的性质以及二倍角公式的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数在区间上的最大值和最小值;
(2)若,其中 求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.(1)求函数的最小正周期和最小值;(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某海滨浴场的海浪高达y(米)是时间t(0≤t≤24,单位:小时)的函数,记作y=f(t).下表是某日各时的浪高数据.

t(时)
0
3
6
9
12
15
18
21
24
y(米)
1.5
1.0
0.5
1.0
1.5
1.0
0.5
0.99
1.5
经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b.
(1)根据以上数据,求出函数y=Acosωt+b的最小正周期T、振幅A及函数表达式;
(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多长时间可供冲浪者进行运动?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(I)求函数上的最大值与最小值;
(II)若实数使得对任意恒成立,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的一段图象如图所示.

(1)求函数的解析式;
(2)将函数的图象向右平移个单位,得到的图象,求直线与函数的图象在内所有交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量, 设函数.
(Ⅰ) 求f (x)的最小正周期.
(Ⅱ) 求f (x) 在上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的最小正周期及单调递增区间;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某机场建在一个海湾的半岛上,飞机跑道AB的长为4.5km,且跑道所在直线与海岸线,的夹角为60°(海岸线看作直线),跑道上距离海岸线最近的点B到海岸线的距离BC=4,D为海岸线l上的一点.设CD=xkm(x>),点D对跑道AB的视角为

(1)将tan表示为x的函数:
(2)求点D的位置,使得取得最大值.

查看答案和解析>>

同步练习册答案