【题目】已知函数
.
(1)当
时,解不等式
;
(2)若关于
的方程
在区间
上恰有一个实数解,求
的取值范围;
(3)设
,若存在
使得函数
在区间
上的最大值和最小值的差不超过1,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+
,过A作AE⊥CD,垂足为E,现将△ADE沿AE折叠,使得DE⊥EC.
![]()
(1)求证:BC⊥面CDE;
(2)在线段AE上是否存在一点R,使得面BDR⊥面DCB,若存在,求出点R的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在平行四边形
中,
点
是
边的中点,将
沿
折起,使点
到达点
的位置,且![]()
(1)求证; 平面
平面
;
(2)若平面
和平面
的交线为
,求二面角
的余弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】出租车几何学是由十九世纪的赫尔曼·闵可夫斯基所创立的。在出租车几何学中,点还是形如
的有序实数对,直线还是满足
的所有
组成的图形,角度大小的定义也和原来一样,直角坐标系内任意两点
定义它们之间的一种“距离”:
,请解决以下问题:
(1)求线段
上一点
到点
的“距离”;
(2)定义:“圆”是所有到定点“距离”为定值的点组成的图形,求“圆”上的所有点到点
的“距离”均为
的“圆”方程,并求该“圆”围成的图形的面积;
(3)若点
到点
的“距离”和点
到点
的“距离”相等,其中实数
满足
,求所有满足条件的点
的轨迹的长之和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com