精英家教网 > 高中数学 > 题目详情

【题目】天津大学某学院欲安排4名毕业生到某外资企业的三个部门实习,要求每个部门至少安排1人,其中甲大学生不能安排到部门工作的方法有_______种(用数字作答).

【答案】24

【解析】分析:根据题意,设4名毕业生为甲、,分2种情况讨论:①,甲单独一人分配到部门,②,甲和其他人一起分配到部门,由加法原理计算可得答案.

详解:根据题意,设4名毕业生为甲、,分2种情况讨论:
①,甲单独一人分配到部门,则甲有2种情况,
分成2组,有种分组方法,再将2组全排列,分配到其他2个部门,有种情况,
则此时有种安排方法;
②,甲和其他人一起分配到部门,
A、B、C中任选1人,与甲一起分配到BC部门,有种情况,
将剩余的2人全排列,分配到其他2个部门,有 种情况,
则此时有种安排方法;
则一共有 种不同的安排方法;
故答案为24

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图:某快递小哥从地出发,沿小路以平均时速20公里小时,送快件到处,已知(公里),是等腰三角形,

(1) 试问,快递小哥能否在50分钟内将快件送到处?

(2)快递小哥出发15分钟后,快递公司发现快件有重大问题,由于通讯不畅,公司只能派车沿大路追赶,若汽车平均时速60公里小时,问,汽车能否先到达处?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f (x)=(-6≤x≤10)的所有零点之和为____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)求函数的单调区间;

(2)若函数有两个零点

(i)求满足条件的最小正整数的值.

(ii)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲将要参加某决赛,赛前四位同学对冠军得主进行竞猜,每人选择一名选手,已知选择甲的概率均为选择甲的概率均为,且四人同时选择甲的概率为,四人均末选择甲的概率为

(1)求的值;

(2)设四位同学中选择甲的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各随机抽取了100件产品作为样本来检测一项质量指标值,若产品的该项质量指标值落在内,则为合格品,否则为不合格品.表1是甲套设备的样本的频数分布表,图是乙套设备的样本的频率分布直方图.

表甲套设备的样本的频数分布表

质量指标值

频数

2

10

36

38

12

2

(1)将频率视为概率.若乙套设备生产了10000件产品,则其中的合格品约有多少件?

(2)填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下,认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关.

甲套设备

乙套设备

合计

合格品

不合格品

合计

附表及公式:,其中

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求的定义域;

(2)判断的奇偶性并给予证明;

(3)求关于x的不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的离心率为,且经过点.

1)求椭圆的方程;

2)直线与椭圆相交于两点,若,求为坐标原点)面积的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过点垂直于轴的直线与抛物线相交于两点,抛物线两点处的切线及直线所围成的三角形面积为.

(1)求抛物线的方程;

(2)设是抛物线上异于原点的两个动点,且满足,求面积的取值范围.

查看答案和解析>>

同步练习册答案