【题目】已知圆C:x2+y2﹣8y+12=0,直线l经过点D(﹣2,0),且斜率为k.
(1)求以线段CD为直径的圆E的方程;
(2)若直线l与圆C相离,求k的取值范围.
【答案】
(1)解:将圆C的方程x2+y2﹣8y+12=0配方得标准方程为x2+(y﹣4)2=4,
则此圆的圆心为C(0,4),半径为2.
所以CD的中点E(﹣1,2),|CD|= ,
∴r= ,
故所求圆E的方程为(x+1)2+(y﹣2)2=5.
(2)解:直线l的方程为y﹣0=k(x+2),
即kx﹣y+2k=0.
若直线l与圆C相离,则有圆心C到直线l的距离 ,解得k< .
【解析】(1)求出圆的圆心,然后求以线段CD为直径的圆E的圆心与半径,即可求出方程;(2)通过直线l与圆C相离,得到圆心到直线的距离大于半径列出关系式,求k的取值范围.
【考点精析】掌握圆的一般方程是解答本题的根本,需要知道圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项;(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了;(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显.
科目:高中数学 来源: 题型:
【题目】为了了解学生遵守《中华人民共和国交通安全法》的情况,调查部门在某学校进行了如下的随机调查:向被调查者提出两个问题:(1)你的学号是奇数吗?(2)在过路口的时候你是否闯过红灯?要求被调查者背对调查人抛掷一枚硬币,如果出现正面,就回答第(1)个问题;否则就回答第(2)个问题.被调查者不必告诉调查人员自己回答的是哪一个问题,只需要回答“是”或“不是”,因为只有被调查本人知道回答了哪个问题,所以都如实做了回答.如果被调查的600人(学号从1到600)中有180人回答了“是”,由此可以估计在这600人中闯过红灯的人数是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等比数列{an}中,已知a1=1,a4=8,若a3 , a5分别为等差数列{bn}的第4项和第16项.
(1)求数列{an}﹑{bn}的通项公式;
(2)令cn=anbn , 求数列{cn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(Ⅰ)求平行于直线x﹣2y+1=0,且与它的距离为2 的直线方程; (Ⅱ)求经过两直线l1:x﹣2y+4=0和l2:x+y﹣2=0的交点P,且与直线l3:2x+3y+1=0垂直的直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图在四面体OABC中,OA,OB,OC两两垂直,且OB=OC=3,OA=4,给出如下判断: ①存在点D(O点除外),使得四面体DABC有三个面是直角三角形;
②存在点D,使得点O在四面体DABC外接球的球面上;
③存在唯一的点D使得OD⊥平面ABC;
④存在点D,使得四面体DABC是正棱锥;
⑤存在无数个点D,使得AD与BC垂直且相等.
其中正确命题的序号是(把你认为正确命题的序号填上).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心在原点,焦点在x轴上,离心率为 ,短轴长为4 . (Ⅰ)求椭圆C的标准方程;
(Ⅱ)直线x=2与椭圆C交于P、Q两点,A、B是椭圆O上位于直线PQ两侧的动点,且直线AB的斜率为 .
①求四边形APBQ面积的最大值;
②设直线PA的斜率为k1 , 直线PB的斜率为k2 , 判断k1+k2的值是否为常数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:k2﹣8k﹣20≤0,命题q:方程 =1表示焦点在x轴上的双曲线. (Ⅰ)命题q为真命题,求实数k的取值范围;
(Ⅱ)若命题“p∨q”为真,命题“p∧q”为假,求实数k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com