精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x+b的图象与函数g(x)=x2+3x+2的图象相切,记F(x)=f(x)g(x).
(1)求实数b的值及函数F(x)的极值;
(2)若关于x的方程F(x)=k恰有三个不等的实数根,求实数k的取值范围.

解:(1)依题意,令f′(x)=g′(x),得1=2x+3,故x=-1
函数f(x)的图象与函数g(x)的图象的切点为(-1,0)
将切点坐标代入函数f(x)=x+b可得b=1
(或:依题意得f(x))=g(x),
即x2+2x+2-b=0有唯一实数解
故△=22-4(2-b)=0,即b=1
∴F(x)=(x+1)(x2+2x+2)=x3+4x2+5x+2
故F′(x)=0,解得x=-1或x=-
列表如下:

从上表可知处取得极小值.
(2)由(1)可知涵数y=F(x)大致图象如图所示.
作函数y=k的图象,当y=F(x)的图象与函数y=k的图象有三个交点时,
关于x的方程F(x)=k恰有三个不等的实数根.结合图形可知

分析:(1)令f′(x)=g′(x),进而求得x,进而可知函数f(x)的图象与函数g(x)的图象的切点,把切点代入f(x)求得b,进而求得函数F(x)的解析式,进而对函数进行求导,使其为0求得x,进而推断出函数F(x)的极大值和极小值.
(2)首先根据(1)中函数F(x)的单调性画出函数的草图,作函数y=k的图象,进而根据当y=F(x)的图象与函数y=k的图象有三个交点时,关于x的方程F(x)=k恰有三个不等的实数根.最后根据图象确定k的范围.
点评:本题主要考查了函数与方程的应用,导函数求函数极值.考查了学生综合分析问题和解决的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案