精英家教网 > 高中数学 > 题目详情
10.(1)已知cos(α+$\frac{π}{6}$)=$\frac{1}{3}$,且$\frac{π}{6}$<α<$\frac{π}{2}$,求cosα;
(2)已知α,β都是锐角,且cosα=$\frac{\sqrt{5}}{5}$,cosβ=$\frac{\sqrt{10}}{10}$,求α+β.

分析 利用同角三角函数的基本关系,两角差的正余弦公式,求得要求式子的值.

解答 解:(1)∵$\frac{π}{6}$<α<$\frac{π}{2}$,∴$\frac{π}{3}$<α+$\frac{π}{6}$<$\frac{2π}{3}$,
又cos(α+$\frac{π}{6}$)=$\frac{1}{3}$,∴sin(α+$\frac{π}{6}$)=$\frac{2\sqrt{2}}{3}$,
∴cosα=cos[(α+$\frac{π}{6}$)-$\frac{π}{6}$]=cos(α+$\frac{π}{6}$)cos$\frac{π}{6}$+sin(α+$\frac{π}{6}$)sin$\frac{π}{6}$=$\frac{1}{3}•\frac{\sqrt{3}}{2}$+$\frac{2\sqrt{2}}{3}•\frac{1}{2}$=$\frac{\sqrt{3}+2\sqrt{2}}{6}$.
(2)∵已知α,β都是锐角,∴α+β∈(0,π),∵cosα=$\frac{\sqrt{5}}{5}$,cosβ=$\frac{\sqrt{10}}{10}$,
∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{2\sqrt{5}}{5}$,sinβ=$\sqrt{{1-cos}^{2}β}$=$\frac{3\sqrt{10}}{10}$,
∴cos(α+β)=cosα•cosβ-sinα•sinβ=-$\frac{\sqrt{2}}{2}$,
∴α+β=$\frac{3π}{4}$.

点评 本题主要考查同角三角函数的基本关系,两角差的正余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.复数z=(2-i)×i(i为虚数单位)在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.极坐标系中,O为极点,点A为直线l:ρsinθ=ρcosθ+2上一点,则|OA|的最小值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,已知圆O1与圆O2相交于A,B两点,过点A作圆O1的切线交圆O2于点C,过点B作两圆的割线,分别交圆O1,圆O2于点D,E,DE与AC相交于点P.
(1)求证:AD∥EC;
(2)若AD是圆O2的切线,且PA=3,PC=1,AD=6,求DB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在一次随机试验中,三个事件A1,A2,A3的概率分别为0.2,0.3,0.5,则下列说法正确的个数是(  )
①A1+A2与A3是互斥事件,也是对立事件;
②A1+A2+A3是必然事件;
③P(A2+A3)=0.8;    
④P(A1+A2)≤0.5.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.椭圆x2+4y2=4的离心率为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{3}{4}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.正实数x,y满足:x+y=xy,则x2+y2-4xy的最小值为-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知一个球的体积为$\frac{4}{3}π$,则该球的表面积为(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某几何体的三视图如图,则该几何体的体积为2.

查看答案和解析>>

同步练习册答案