【题目】在四棱锥
中,底面
为直角梯形,
,
,
,
,
,
为线段
上的中点.
![]()
(1)证明:
平面
;
(2)求直线
与平面
所成角的余弦值.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,焦点分别为
,点
是椭圆
上的点,
面积的最大值是
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与椭圆
交于
两点,点
是椭圆
上的点,
是坐标原点,若
判定四边形
的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
、
,椭圆的离心率为
,过椭圆
的左焦点
,且斜率为
的直线
,与以右焦点
为圆心,半径为
的圆
相切.
(1)求椭圆
的标准方程;
(2)线段
是椭圆
过右焦点
的弦,且
,求
的面积的最大值以及取最大值时实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某民航部门统计的2019年春运期间12个城市售出的往返机票的平均价格以及相比上年同期变化幅度的数据统计图表如图所示,根据图表,下面叙述不正确的是( )
![]()
A. 同去年相比,深圳的变化幅度最小且厦门的平均价格有所上升
B. 天津的平均价格同去年相比涨幅最大且2019年北京的平均价格最高
C. 2019年平均价格从高到低居于前三位的城市为北京、深圳、广州
D. 同去年相比,平均价格的涨幅从高到低居于前三位的城市为天津、西安、南京
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a∈R,函数f(x)=(-x2+ax)ex(x∈R).
(1)当a=2时,求函数f(x)的单调区间;
(2)若函数f(x)在(-1,1)上单调递增,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某社区居民有无收看“奥运会开幕式”,某记者分别从某社区60~70岁,40~50岁,20~30岁的三个年龄段中的160人,240人,x人中,采用分层抽样的方法共抽查了30人进行调查,若在60~70岁这个年龄段中抽查了8人,那么x为( ) .
A. 90 B. 120 C. 180 D. 200
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点为极点,以
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求直线
的普通方程及曲线
的直角坐标方程;
(2)设点
,直线
与曲线
相交于两点
、
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com