精英家教网 > 高中数学 > 题目详情
已知函数满足,则(     )  
A.B.C.D.
C

试题分析:令2x-1=3,则x=2,所以,3×2+1=7,选C。
点评:简单题,已知求f(x),可以利用定义法或换元法。本题可以先求f(x),再求f(3).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

函数的定义域为,且满足对于定义域内任意的都有等式.
(1)求的值;
(2)判断的奇偶性并证明;
(3)若,且上是增函数,解关于的不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求的解集
(2)若关于的不等式的解集是,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=2x.
(1)求f(log2)的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若函数都在区间上有定义,对任意,都有成立,则称函数为区间上的“伙伴函数”
(1)若为区间上的“伙伴函数”,求的范围。
(2)判断是否为区间上的“伙伴函数”?
(3)若为区间上的“伙伴函数”,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,(1)分别求;(2)然后归纳猜想一般性结论,并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则的最大值是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的图象一定过点(  )
A.(1,1)B.(1,2)C.(2,0)D.(2,-1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于在区间上有意义的两个函数,如果对于任意的,都有,则称在区间上是接近的两个函数,否则称它们在上是非接近的两个函数。现有两个函数,且都有意义.
(1)求的取值范围;
(2)讨论在区间上是否是接近的两个函数.

查看答案和解析>>

同步练习册答案