精英家教网 > 高中数学 > 题目详情
已知,则的最大值是       

试题分析

的几何意义可以看做点到点和点距离之差的最大值.而
所以
点评:本题的关键是根据函数的几何意义将代数问题转化成几何问题.属中档题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知函数,则=      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设二次函数满足(+2)=(2-),且方程的两实根的平方和为10,的图象过点(0,3),
⑴求()的解析式.
⑵求上的值域。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若曲线与曲线在它们的交点(1,c)处具有公共切线,求,的值;
(2)当时,若函数在区间[,2]上的最大值为28,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数满足,则(     )  
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
(注:平均综合费用平均建筑费用平均购地费用,平均购地费用

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(x,y)在映射f下的象是(xy,x+y),则点(2,3)在f下的象是          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)如果函数上是单调减函数,求的取值范围;
(2)是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,请求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

将边长为的一块正方形铁皮的四角各截去一个大小相同的小正方形,然后将四边折起做成一个无盖的方盒.欲使所得的方盒有最大容积,截去的小正方形的边长应为多少?方盒的最大容积为多少?

查看答案和解析>>

同步练习册答案