精英家教网 > 高中数学 > 题目详情
某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
(注:平均综合费用平均建筑费用平均购地费用,平均购地费用
应建为15层

试题分析:设楼房每平米的平均综合费为元,则


当且仅当,即时取等号
因此,当时,取最小值
答:为了楼房每平方米的平均综合费最少,该楼房应建为15层。
点评:解决实际问题时,要注意实际问题的定义域,另外,还要注意恰当基本不等式的应用条件.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数(a,b为常数)且方程f(x)-x+12=0有两个实根为x1="3," x2=4.
(1)求函数f(x)的解析式;
(2)设,解关于x的不等式;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在上的偶函数满足,且在上是减函数,是钝角三角形的两个锐角,则的大小关系是
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

欲修建一横断面为等腰梯形(如图1)的水渠,为降低成本必须尽量减少水与渠壁的接触面,若水渠横断面面积设计为定值S,渠深h,则水渠壁的倾角α(0°<α<90°)应为多大时,方能使修建成本最低?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若函数都在区间上有定义,对任意,都有成立,则称函数为区间上的“伙伴函数”
(1)若为区间上的“伙伴函数”,求的范围。
(2)判断是否为区间上的“伙伴函数”?
(3)若为区间上的“伙伴函数”,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于区间上有意义的两个函数如果有任意,均有则称上是接近的,否则称上是非接近的.现有两个函数给定区间, 讨论在给定区间上是否是接近的.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则的最大值是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数在给定区间M上存在正数t,使得对于任意,有,且,则称为M上的t级类增函数。给出4个命题
①函数上的3级类增函数
②函数上的1级类增函数
③若函数上的级类增函数,则实数a的最小值为2
④设是定义在上的函数,且满足:1.对任意,恒有;2.对任意,恒有;3. 对任意,若函数上的t级类增函数,则实数t的取值范围为
以上命题中为真命题的是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的极值;
(2)若上恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案