分析 (1)由x,y,z均为正数,且x2+4y2+z2=3,运用柯西不等式和不等式的性质,即可得证;
(2)由x,y,z均为正数,且x2+4y2+z2=3,运用柯西不等式可得(2xy+2yz+zx)2≤(x2+4y2+z2)(4y2+z2+x2),即可求得最大值.
解答 解:(1)证明:由x,y,z均为正数,且x2+4y2+z2=3,
可得(x+2y+z)2≤(x2+4y2+z2)(1+1+1)=9,
可得x+2y+z≤3,当且仅当x=2y=z=1时,等号成立;
(2)x,y,z均为正数,且x2+4y2+z2=3,可得
(2xy+2yz+zx)2≤(x2+4y2+z2)(4y2+z2+x2)=9,
可得2xy+2yz+zx≤3,
当且仅当$\frac{x}{2y}=\frac{2y}{z}=\frac{z}{x}$即x=2y=z=1时,取得最大值3..
点评 本题考查不等式的证明和最值的求法,注意运用柯西不等式和不等式的性质,考查推理和运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$或-$\frac{1}{2}$ | B. | 1 | C. | 1或-1 | D. | 2或-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{4}+\frac{y^2}{3}=1$ | B. | $\frac{x^2}{4}+{y^2}=1$ | C. | $\frac{x^2}{4}-\frac{y^2}{3}=1$ | D. | $\frac{x^2}{4}-{y^2}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2 | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com