精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆 与双曲线 有相同的焦点,且椭圆 过点 ,若直线 与直线 平行且与椭圆 相交于点 ,B(x2,y2).

(Ⅰ) 求椭圆的标准方程;
(Ⅱ) 求三角形 面积的最大值.

【答案】解:(Ⅰ)由已知有 ,∴

∴椭圆 的标准方程为 .

(Ⅱ)∵ ,∴设直线 方程为

代入 得:

∴当 ,即 时,设 ,则: ,

(当且仅当 时,取等号)

的最大值为 .


【解析】(1)由椭圆过已知点及与已知双曲线有相同焦点,可得到关于a,b,c的方程组,求a,b,c得到椅子圆方程。
(2)将直线方程代入椭圆方程得到关于x的一元二次方程,由韦达定理和弦长公式将三角形面积表示为m的函数式,求最大值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)在R上存在导数f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(4﹣m)﹣f(m)≥8﹣4m.则实数m的取值范围为( )
A.[﹣2,2]
B.[2,+∞)
C.[0,+∞)
D.(﹣∞,﹣2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (a>0). (Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若 恒成立,求a的取值范围;
(Ⅲ)证明:总存在x0 , 使得当x∈(x0 , +∞),恒有f(x)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P﹣ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD,若G为AD边的中点,
(1)求证:BG⊥平面PAD;
(2)求证:AD⊥PB;
(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的两个零点 满足 ,集合 ,则( )
A.mA , 都有f(m+3)>0
B.mA , 都有f(m+3)<0
C.m0A , 使得f(m0+3)=0
D.m0A , 使得f(m0+3)<0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为2的正六边形ABCDEF中,动圆Q的半径为1,圆心在线段CD(含端点)上运动,P是圆Q上及内部的动点,设向量 (m,n为实数),则m+n的取值范围是(  )

A.(1,2]
B.[5,6]
C.[2,5]
D.[3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为 (t为参数).
(Ⅰ)写出直线l的普通方程与曲线C的直角坐标方程;
(Ⅱ)设曲线C经过伸缩变换 得到曲线C',若点P(1,0),直线l与C'交与A,B,求|PA||PB|,|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在坐标原点,焦点在x轴上,左顶点为A,左焦点为F1(﹣2,0),点B(2, )在椭圆C上,直线y=kx(k≠0)与椭圆C交于E,F两点,直线AE,AF分别与y轴交于点M,N
(Ⅰ)求椭圆C的方程;
(Ⅱ)在x轴上是否存在点P,使得无论非零实数k怎样变化,总有∠MPN为直角?若存在,求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}为递增的等差数列,a1=f(x+1),a2=0,a3=f(x﹣1),其中f(x)=x2﹣4x+2,则数列{an}的通项公式为( )
A.an=n﹣2
B.an=2n﹣4
C.an=3n﹣6
D.an=4n﹣8

查看答案和解析>>

同步练习册答案