精英家教网 > 高中数学 > 题目详情
已知椭圆C过点P(1,
3
2
),两个焦点分别为F1(-1,0),F2(1,0).
(1)求椭圆C的方程;
(2)过点F1的直线交椭圆于A、B两点,求线段AB的中点的轨迹方程.
(1)由题意可知,c=1,a2=b2+1
设椭圆的方程为
x2
a2
+
y2
b2
=1
(a>b>0)…即
x2
1+b2
+
y2
b2
=1

因为点P在椭圆上,所以
1
1+b2
+
9
4b2
=1
,解得b2=3,
所以椭圆方程为
x2
4
+
y2
3
=1

(2)设过点F1的直线方程为:x=my-1
代入
x2
4
+
y2
3
=1
,得:
(my-1)2
4
+
y2
3
=1

整理得(3m2+4)y2-6my-9=0y1+y2=
6m
3m2+4

同理可得:x1+x2=
-8
3m2+4

设线段AB的中点为M(x,y),则
x=
x1+x2
2
=
-4
3m2+4
y=
y1+y2
2
=
3m
3m2+4

整理得:3x2+4y2+3x=0
当y=0时,易知线段AB的中点为原点,满足上述方程.
综上所述,所求的方程为:3x2+4y2+3x=0
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设a、b是非零实数,则方程bx2+ay2=ab及ax+by=0所表示的图形可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设双曲线方程
x2
a2
-
y2
b2
=1(b>a>0)
的半焦距为c,直线l过(a,0),(0,b)两点,已知原点到直线l的距离为
3
4
c

(1)求双曲线的离心率;
(2)经过该双曲线的右焦点且斜率为2的直线m被双曲线截得的弦长为15,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A(-3,0),B(3,0).若△ABC周长为16.
(1)求点C轨迹L的方程;
(2)过O作直线OM、ON,分别交轨迹L于M、N点,且OM⊥ON,求S△MON的最小值;
(3)在(2)的前提下过O作OP⊥MN交于P点.求证点P在定圆上,并求该圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
与抛物线C2:x2=2py(p>0)的一个交点为M.抛物线C2在点M处的切线过椭圆C1的右焦点F.
(1)若M(2,
2
5
5
)
,求C1和C2的标准方程;
(II)若b=1,求p关于a的函数表达式p=f(a).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知F1,F2为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点.
(Ⅰ)若点P为双曲线与圆x2+y2=a2+b2的一个交点,且满足|PF1|=2|PF2|,求此双曲线的离心率;
(Ⅱ)设双曲线的渐近线方程为y=±x,F2到渐近线的距离是
2
,过F2的直线交双曲线于A,B两点,且以AB为直径的圆与y轴相切,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点D(0,-2),过点D作抛物线C1:x2=2py(p>0)的切线l,切点A在第二象限,如图
(Ⅰ)求切点A的纵坐标;
(Ⅱ)若离心率为
3
2
的椭圆
x2
a2
+
y2
b2
=1(a>b>0)
恰好经过切点A,设切线l交椭圆的另一点为B,记切线l,OA,OB的斜率分别为k,k1,k2,若k1+2k2=4k,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线y=a交抛物线y=x2于A,B两点,若该抛物线上存在点C,使得∠ACB为直角,则a的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的中心为坐标原点O,焦点在x轴上,焦距为2,F为右焦点,B1为下顶点,B2为上顶点,SB1FB2=1
(I)求椭圆的方程;
(Ⅱ)若直线l同时满足下列三个条件:①与直线B1F平行;②与椭圆交于两个不同的点P、Q;③S△POQ=
2
3
,求直线l的方程.

查看答案和解析>>

同步练习册答案