精英家教网 > 高中数学 > 题目详情
9.已知i是虚数单位,x,y∈R,若x+2i=y-1+yi,则x+y=3.

分析 利用复数相等列出方程,求解即可.

解答 解:i是虚数单位,x,y∈R,x+2i=y-1+yi,
可得$\left\{\begin{array}{l}{x=y-1}\\{y=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,
x+y=3.
故答案为:3.

点评 本题考查复数的相等的充要条件的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=3,$b=2\sqrt{3}$,A=60°,则满足条件的三角形个数为(  )
A.0B.1C.2D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<$\frac{π}{2}$),其导函数f'(x)的部分图象如图所示,则函数f(x)的解析式为(  )
A.$f(x)=cos(2x-\frac{π}{6})$B.$f(x)=sin(2x+\frac{π}{6})$C.$f(x)=\frac{1}{2}cos(2x+\frac{π}{6})$D.$f(x)=\frac{1}{2}sin(2x-\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.等比数列{an}中,a1=3,a4=24,则数列{$\frac{1}{a_n}$}的前5项和为(  )
A.$\frac{19}{25}$B.$\frac{25}{36}$C.$\frac{31}{48}$D.$\frac{49}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知在等比数列{an}中,a3+a6=6,a5+a8=9,则a7+a10等于(  )
A.5B.$\frac{25}{2}$C.6D.$\frac{27}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=sin(x+$\frac{π}{6}$)+sin(x-$\frac{π}{6}$)+acosx+b,(a,b∈R)且均为常数).
(1)求函数f(x)的最小正周期;
(2)若f(x)在区间[-$\frac{π}{3}$,0]上单调递增,且恰好能够取到f(x)的最小值2,试求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(x,-2)$\overrightarrow{c}$=(-1,y),若$\overrightarrow{a}⊥\overrightarrow{b}$且$\overrightarrow{a}$∥$\overrightarrow{c}$,则x+y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设变量x,y满足约束条件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y+3≥0\end{array}\right.$则目标函数z=y-3x的最小值为(  )
A.-15B.$-\frac{1}{2}$C.-11D.$-\frac{31}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.向量$\overrightarrow{a}$=(m-2,m+3),$\overrightarrow{b}$=(2m+1,m-2),若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角,则m的取值范围是(2,+∞∪(-∞,$\frac{-11-5\sqrt{5}}{2}$ )∪( $\frac{-11+5\sqrt{5}}{2}$,-$\frac{4}{3}$).

查看答案和解析>>

同步练习册答案