精英家教网 > 高中数学 > 题目详情
已知正方体ABCD-A1B1C1D1的棱长为2,O是面ABCD的中心,点P在C1D1上移动,求|OP|的最小值.
考点:棱柱的结构特征
专题:计算题,作图题,空间位置关系与距离
分析:由题意作出正方体的直观图,由图可得|OP|的最小值.
解答: 解:由题意,正方体ABCD-A1B1C1D1如下图:

则当P为C1D1的中点时,|OP|最短,
此时,|OP|=
22+1
=
5
点评:本题考查了学生的空间想象力与作图能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设 a>b,则下列不等式中恒成立的是(  )
A、a2>b2
B、
1
a
1
b
C、lg(a-b)>0
D、2a>2b

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式|x+1|-|x-2|≤a对于任意实数x恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,ED=2
2
,M为CE的中点,N为CD中点.
(1)求证:平面BMN∥平面ADEF;
(2)求证:平面BCE⊥平面BDE;
(3)求点D到平面BEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,b>0,求证:
a+b
2
-
ab
a2+b2
2
-
a+b
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),过焦点垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.
(I)求椭圆的方程;
(Ⅱ)过点Q(-1,0)的直线l交椭圆于A,B两点,交直线x=-4于点E,
AQ
QB
AE
EB
.判断λ+μ是否为定值,若是,计算出该定值;不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)为定义在区间I上的函数.若对I上任意两点x1,x2(x1≠x2),总有f(
x1+x2
2
)<
1
2
[f(x1)+f(x2)],则称f(x)为I上的严格下凸函数.若f(x)为I上的严格下凸函数,其充要条件为:对任意x∈I有f″(x)>0成立(f″(x)是函数f(x)导函数的导函数),则以下结论正确的有
 

①f(x)=
2x+2014
3x+7
,x∈[0,2014]是严格下凸函数.
②设x1,x2∈(0,
π
2
)且x1≠x2,则有tan(
x1+x2
2
)>
1
2
(tanx1+tanx2
③f(x)=-x3+3x2在区间[1,2014]上是严格下凸函数.
④f(x)=
1
6
x3+sinx,(x∈(
π
6
π
3
))是严格下凸函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2x-cosx,{an}是公差为
π
8
的等差数列,f(a1)+f(a2)+…+f(a7)=7π,则[f(a4)]2-a1a7=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
x-y+2≥0
x+y-4≥0
2x-y-5≤0

(1)求z=x+2y的最大和最小值.
(2)求z=
y
x
的取值范围.
(3)求z=x2+y2的最大和最小值.

查看答案和解析>>

同步练习册答案