【题目】某火锅店为了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如下表:
x | 2 | 5 | 8 | 9 | 11 |
y | 12 | 10 | 8 | 8 | 7 |
(1)求y关于x的回归方程;
(2)判定y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额;
附:①;.
②参考数据如下:
i | ||||
1 | 2 | 12 | 4 | 24 |
2 | 5 | 10 | 25 | 50 |
3 | 8 | 8 | 64 | 64 |
4 | 9 | 8 | 81 | 72 |
5 | 11 | 7 | 121 | 77 |
35 | 45 | 295 | 287 |
科目:高中数学 来源: 题型:
【题目】某地有三家工厂,分别位于矩形ABCD的顶点A,B,及CD的中点P处,已知km,,为了处理三家工厂的污水,现要在矩形ABCD的区域上(含边界),且A,B与等距离的一点O处建造一个污水处理厂,并铺设排污管道AO,BO,OP,设排污管道的总长为ykm.
(I)按下列要求写出函数关系式:
①设,将表示成的函数关系式;
②设,将表示成的函数关系式.
(Ⅱ)请你选用(I)中的一个函数关系式,确定污水处理厂的位置,使三条排水管道总长度最短.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆M:(a>b>0)的离心率为,左右顶点分別为A,B,线段AB的长为4.P在椭圆M上且位于第一象限,过点A,B分别作l1⊥PA,l2⊥PB,直线l1,l2交于点C.
(1)若点C的横坐标为﹣1,求P点的坐标;
(2)直线l1与椭圆M的另一交点为Q,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且过点.
(1)求椭圆的标准方程;
(2)若,为椭圆上不同的两点,且以为直径的圆过坐标原点.是否存在定圆与动直线相切?若存在,求出该圆的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]:在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线,的直角坐标方程;
(2)判断曲线,是否相交,若相交,请求出交点间的距离;若不相交,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,l的极坐标方程为,C的参数方程为(为参数,).写出l和C的普通方程;
(2)在直角坐标系xOy中,曲线的参数方程为(t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,记曲线和在第一象限内的交点为A.写出曲线的极坐标方程和线段OA的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形是边长为的正方形,为的中点,以为折痕把折起,使点到达点的位置,且二面角为直二面角,连结.
(1)记平面与平面相较于,在图中作出,并说明画法;
(2)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新高考改革后,国家只统一考试数学和语文,英语学科改为参加等级考试,每年考两次,分别放在每个学年的上、下学期,物理、化学、生物、地理、历史、政治这六科则以该省的省会考成绩为准.考生从中选择三科成绩,参加大学相关院系的录取.
(1)若英语等级考试成绩有一次为优,即可达到某211院校的录取要求.假设某个学生参加每次等级考试事件是独立的,且该生英语等级考试成绩为优的概率都是,求该生在高二上学期的英语等级考试成绩才为优的概率;
(2)据预测,要想报考该211院校的相关院系,省会考的成绩至少在90分以上,才有可能被该校录取.假设该生在省会考六科的成绩,考到90分以上概率都是,设该生在省会考时考到90分以上的科目数为,求的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com