精英家教网 > 高中数学 > 题目详情

【题目】如图,四边形是边长为的正方形,的中点,以为折痕把折起,使点到达点的位置,且二面角为直二面角,连结.

(1)记平面与平面相较于,在图中作出,并说明画法;

(2)求直线与平面所成角的正弦值.

【答案】(1)详见解析(2)

【解析】

(1)只需延长交于点,连结,即可满足是平面与平面的交线;

(2)先作用,得到两两垂直,以点为坐标原点,建立空间直角坐标系,求出平面的法向量,和直线的方向向量,由向量的夹角公式结合线面角的范围,即可求出结果.

解:(1)延长交于点,连接,则直线即为.

(2)过,则,所以是二面角的平面角的补角,因为二面角为直二面角,从而,即.

为坐标原点,分别以轴,轴,轴正方向建立空间直角坐标系,如图,在中,,所以,从而,所以,又,则

所以

设平面的法向量为,则

所以

设直线与平面所成角为,则

所以直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,一个六边形点阵,它的中心是1个点(第1层),第2层每边有2个点, 3层每边有3个点,,依此类推,若一个六边形点阵共有217个点,那么它的层数为(

A.10B.9C.8D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某火锅店为了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如下表:

x

2

5

8

9

11

y

12

10

8

8

7

1)求y关于x的回归方程

2)判定yx之间是正相关还是负相关;若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额;

附:①.

②参考数据如下:

i

1

2

12

4

24

2

5

10

25

50

3

8

8

64

64

4

9

8

81

72

5

11

7

121

77

35

45

295

287

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为为参数),直线与曲线相交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:


3

2

4




0

4


)求的标准方程;

)请问是否存在直线满足条件:的焦点交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市对创“市级示范性学校”的甲、乙两所学校进行复查验收,对办学的社会满意度一项评价随机访问了20为市民,这20位市民对这两所学校的评分(评分越高表明市民的评价越好)的数据如下:

甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;

乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.

检查组将成绩分成了四个等级:成绩在区间的为等,在区间的为等,在区间的为等,在区间等.

(1)请用茎叶图表示上面的数据,并通过观察茎叶图,对两所学校办学的社会满意度进行比较,写出两个统计结论;

(2)估计哪所学校的市民的评分等级为级或级的概率大,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,判断函数的单调性;

(2)当有两个极值点时,求a的取值范围,并证明的极大值大于2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)若直线与曲线交于两点,且设定点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln (x+1)-xa∈R.

(1)当a>0时,求函数f(x)的单调区间;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

同步练习册答案