精英家教网 > 高中数学 > 题目详情
4.调查某桑场采桑员和辅助工患桑毛虫皮炎病的情况,结果如表:
采桑不采桑合计
患者人数181230
健康人数57883
合计2390113
利用2×2列联表的独立性检验估计,“患桑毛虫皮炎病与采桑”是否有关?认为两者有关系会犯错误的概率是多少?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
P(K2≥K)0.0050.001
K7.87910.828

分析 根据所给的表格中的数据,代入求观测值的公式求出观测值,同临界值进行比较,得到有99.9%的把握认为“患桑毛虫皮炎病与采桑”有关系.

解答 解:由已知a=18,b=12,c=5,d=78,
所以a+b=30,c+d=83,
a+c=23,b+d=90,n=113.
所以K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$
=$\frac{113×(18×78-12×5)2}{30×83×23×90}$≈39.6>10.828.
所以有99.9%的把握认为“患桑毛虫皮炎病与采桑”有关系.
认为两者有关系会犯错误的概率是0.1%.

点评 本题考查独立性检验知识及应用,考查学生的计算能力,考查学生分析解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知数阵$(\begin{array}{l}{a_{11}}{a_{12}}{a_{13}}\\{a_{21}}{a_{22}}{a_{23}}\\{a_{31}}{a_{32}}{a_{33}}\end{array})$中,每行的三个数依次成等差数列,每列的三个数也依次成等差数列,若a22=6,则所有九个数的和为54.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=Asin(ωx+ϕ)(A>0,ω>0,0≤ϕ≤\frac{π}{2})$的图象过点$M(0,\frac{1}{2})$,最小正周期为$\frac{2π}{3}$,且最小值为-1.
(1)求f(x)的解析式;
(2)求f(x)在区间$[\frac{π}{18},\frac{5π}{9}]$上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某几何体的三视图如图所示,则该几何体的体积为(  )
A.18+8πB.24+8πC.18+16πD.24+16π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.异面直线a与b所成的角为50°,P为空间一点,则过P点且与a,b所成的角都是50°的直线有2条.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某多面体的三视图如图所示,则该多面体外接球的表面积为$\frac{41}{4}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,已知AB=4,且tanAtanB=$\frac{3}{4}$,则△ABC的面积的最大值为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的首项是a1=1,an+1=2an+1.
(1)求数列{an}的通项公式;
(2)求数列{nan}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设△ABC的内角A,B,C所对的边分别为a,b,c,已知$\overrightarrow m=(sinB,-2sinA)$,$\overrightarrow n=(sinB,sinC)$且$\overrightarrow{m}$⊥$\overrightarrow{n}$
(Ⅰ)若a=b,求cosB;
(Ⅱ)若B=90°,且a=$\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

同步练习册答案