【题目】如图,在四棱锥
中,已知
平面
,
为等边三角形,
,
,
与平面
所成角的正切值为
.
![]()
(Ⅰ)证明:
平面
;
(Ⅱ)若
是
的中点,求二面角
的余弦值.
【答案】(Ⅰ)见解析.(Ⅱ)
.
【解析】
(Ⅰ)先证明
为
与平面
所成的角,于是可得
,于是
.又由题意得到
,故得
,再根据线面平行的性质可得所证结论. (Ⅱ) 取
的中点
,连接
,可证得
.建立空间直角坐标系,分别求出平面
和平面
的法向量,根据两个法向量夹角的余弦值得到二面角的余弦值.
(Ⅰ)证明:因为
平面
,
平面
,
所以![]()
又
,
,
所以
平面
,
所以
为
与平面
所成的角.
在
中,
,
所以![]()
所以在
中,
,
.
又
,
所以在底面
中,
,
又
平面
,
平面
,
所以
平面
.
(Ⅱ)解:取
的中点
,连接
,则
,由(Ⅰ)知
,
所以
,
分别以
,
,
为
,
,
轴建立空间直角坐标系
.
![]()
则
,
,
,
所以
,
,![]()
设平面
的一个法向量为
,
由
,即
,得
,
令
,则
.
设平面
的一个法向量为
,
由
,即
,得
,
令
,则
.
所以
,
由图形可得二面角
为锐角,
所以二面角
的余弦值为
.
科目:高中数学 来源: 题型:
【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”, 《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员“礼让斑马线”行为统计数据:
月份 | 1 | 2 | 3 | 4 | 5 |
违章驾驶员人数 | 120 | 105 | 100 | 90 | 85 |
(1)请利用所给数据求违章人数
与月份
之间的回归直线方程
;
(2)预测该路口9月份的不“礼让斑马线”违章驾驶员人数.
参考公式:
,
.
参考数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(
)过点
,短轴一个端点到右焦点的距离为2.
(1)求椭圆C的方程;
(2)设过定点
的直线1与椭圆交于不同的两点A,B,若坐标原点O在以线段AB为直径的圆上,求直线l的斜率k.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一椭圆形溜冰场,长轴长100米,短轴长为60米,现要在这溜冰场上划定一个各顶点都在溜冰场边界上的矩形区域,且使这个区域的面积最大,应把这个矩形的顶点定位在何处?并求出此矩形的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.由测量表得到如下频率分布直方图
(1)补全上面的频率分布直方图(用阴影表示);
(2)统计方法中,同一组数据常用该组区间的中间值作为代表,据此估计这种产品质量指标值服从正态分布Z(μ,σ2),其中μ近似为样本平均值
,σ2近似为样本方差s2(组数据取中间值);
①利用该正态分布,求从该厂生产的产品中任取一件,该产品为合格品的概率;
②该企业每年生产这种产品10万件,生产一件合格品利润10元,生产一件不合格品亏损20元,则该企业的年利润是多少?
参考数据:
=5.1,若Z~N(μ,σ2),则P(μ﹣σ,μ+σ)=0.6826,P(μ﹣2σ,μ+2σ)=0.9544.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】郴州市某中学从甲乙两个教师所教班级的学生中随机抽取100人,每人分别对两个教师进行评分,满分均为100分,整理评分数据,将分数以10为组距分成6组:
,
,
,
,
,
.得到甲教师的频率分布直方图,和乙教师的频数分布表:
![]()
乙教师分数频数分布表 | |
分数区间 | 频数 |
| 3 |
| 3 |
| 15 |
| 19 |
| 35 |
| 25 |
(1)在抽样的100人中,求对甲教师的评分低于70分的人数;
(2)从对乙教师的评分在
范围内的人中随机选出2人,求2人评分均在
范围内的概率;
(3)如果该校以学生对老师评分的中位数是否大于80分作为衡量一个教师是否可评为该年度该校优秀教师的标准,则甲、乙两个教师中哪一个可评为年度该校优秀教师?(精确到0.1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com