精英家教网 > 高中数学 > 题目详情
5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,若存在过右焦点F的直线与双曲线C相交于A,B 两点且$\overrightarrow{AF}$=3$\overrightarrow{BF}$,则双曲线在一、三象限的渐近线的斜率的最小值为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.2$\sqrt{2}$

分析 设A(x1,y1),B(x2,y2),根据向量数量积关系,建立不等式关系进行求解即可.

解答 解:由题意,A在双曲线的左支上,B在右支上,
设A(x1,y1),B(x2,y2),右焦点F(c,0),
则∵$\overrightarrow{AF}$=3$\overrightarrow{BF}$,∴c-x1=3(c-x2),
∴3x2-x1=2c,
∵x1≤-a,x2≥a,
∴3x2-x1≥4a,∴2c≥4a,∴e=$\frac{c}{a}$≥2,
∴$e=\sqrt{1+\frac{b^2}{a^2}}=\sqrt{1+{k^2}}≥2,即k≥\sqrt{3}或k≤-\sqrt{3}$
∴双曲线在一、三象限的渐近线的斜率的最小值为$\sqrt{3}$,
故选:B.

点评 本题主要考查双曲线的性质的应用,根据向量共线关系,建立方程组是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是(  )
A.至少有1个白球,都是白球B.恰有1个红球,恰有2个红球
C.至少有1个白球,至少有1个红球D.至少有1个红球,都是白球

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.2015年10月十八届五中全会决定全面放开二胎,这意味着一对夫妇可以生育两个孩子.全面二胎于2016年1月1日起正式实施.某地计划生育部门为了了解当地家庭对“全面二胎”的赞同程度,从当地200位城市居民中用系统抽样的方法抽取了20位居民进行问卷调查.统计如表:
居民编号28
问卷得分365278701610072781002440787880945577735855
(注:表中居民编号由小到大排列,得分越高赞同度越高)
(Ⅰ)列出该地得分为100分的居民编号;
(Ⅱ)该地区计划生育部门从当地农村居民中也用系统抽样的方法抽取了20位居民,将两类居民问卷得分情况制作了茎叶图,试通过茎叶图中数据信息,用样本特征数评价农村居民和城市居民对“全面二胎”的赞同程度(不要求算出具体数值,给出结论即可);
(Ⅲ)将得分不低于70分的调查对象称为“持赞同态度”.当地计划生育部门想更进一步了解城市居民“持赞同态度”居民的更多信息,将调查所得的频率视为概率,从大量的居民中采用随机抽样的方法每次抽取1人,共抽取了4次.
(i)求每次抽取1人,抽到“持赞同态度”居民的概率;
(ii)若设被抽到的4人“持赞同态度”的人数为ξ.每次抽取结果相互独立,求ξ的分布列、期望E(ξ)及其方差D(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的上下左右顶点分别为A,B,C,D,且左右的焦点为F1,F2,且以F1F2为直径的圆内切于菱形ABCD,则椭圆的离心率e为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}-1}}{2}$C.$\frac{{1+\sqrt{5}}}{2}$D.$\frac{{-1+\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.“a=2”是“直线l1:(a+2)x+(a-2)y=1与直线l2:(a-2)x+(3a-4)y=2相互垂直”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(1,$\frac{{2\sqrt{3}}}{3}$),长轴长为2$\sqrt{3}$,过右焦点F的直线l与C相交于A,B两点.O为坐标原点.
(1)求椭圆C的方程;
(2)若点P在椭圆C上,且$\overrightarrow{OA}$=$\overrightarrow{BP}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知A(x1,y1)是单位圆O上任意一点,将射线OA绕点O逆时针旋转$\frac{π}{3}$,与单位圆O交于点B(x2,y2),若x=my1-2y2(m>0)的最大值为2,则m的值为(  )
A.1B.2C.2$\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.执行如图所示的程序框图,若输入A的值为2,则输出的n值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,B=75°,C=60°,c=1,则最短边的边长等于(  )
A.$\frac{{\sqrt{6}}}{2}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案